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Project Objective: Alkali-silica reaction (ASR) is a deleterious chemical process that may occur 

in cement-based materials such as mortars and concretes, where the hydroxyl 
ions in the highly alkaline pore solution attack the siloxane groups in the 
siliceous minerals in the aggregates. The reaction produces a cross-linked 
alkali-silica gel.  The ASR gel swells in the presence of water. Expansion of 
the gel results in cracking when the swelling-induced stress exceeds the 
fracture toughness of the concrete.  As the ASR continues, cracks may grow 
and eventually coalesce, which results in reduced service life and a decrease 
safety of concrete structures. 

    Since concrete is widely used as a critical structural component in dry cask 
storage of used nuclear fuels, ASR damage poses a significant threat to the 
sustainability of long term dry cask storage systems. Therefore, techniques 
for effectively detecting, managing and mitigating ASR damage are needed.  
Currently, there are no nondestructive methods to accurately detect ASR 
damage in existing concrete structures.  The only current way of accurately 
assessing ASR damage is to drill a core from an existing structure, and 
conduct microscopy on this drilled cylindrical core. Clearly, such a practice 
is not applicable to dry cask storage systems.  To meet these needs, this 
research is aimed at developing (1) a suite of nonlinear ultrasonic 
quantitative nondestructive evaluation (QNDE) techniques to characterize 
ASR damage, and (2) a physics-based model for ASR damage evolution 
using the QNDE data.  Outcomes of this research will provide a 
nondestructive diagnostic tool to evaluate the extent of the ASR damage, and 
a prognostic tool to estimate the future reliability and safety of the concrete 
structures in dry cask storage systems. 
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I. Summary of Accomplishments of the Project 

1. Nonlinear wave mixing technique to measure the ANLP in concrete samples 
nondestructively in a laboratory environment – We have developed a collinear wave 
mixing technique to characterize ASR damage nondestructively.  The technique has 
been successfully demonstrated in laboratory concrete samples subjected to accelerated 
ASR damage.  The robustness and accuracy of this collinear wave mixing technique has 
been assessed by measuring the expansion and by the postmortem destructive optical 
microscopy of the concrete samples.  

2. Physics-based models that correlate the ANLP to ASR damage – A preliminary model 
that correlates the acoustic nonlinearity parameter (ANLP) to ASR damage has been 
developed.  The model is based on the microstructure changes in the concrete induced 
by ASR damage.  Since the ANLP can be measured directly from the collinear wave 
mixing technique, this ANLP-ASR relationship enables the quantitative nondestructive 
evaluation of ASR damage by using the collinear wave mixing technique. 

3. Physics-based models for ASR damage evolution – A chemo-mechanics model to 
describe the ASR-induced microstructural damage evolution has been developed and 
incorporated into a numerical simulation code based on the Lattice Discrete Particle 
Model (LDPM). The chemo-mechanics model accounts for all major aspects of chemical 
and mechanical processes including alkaline diffusion, ASR gel production, water 
imbibition, gel expansion, gel permeation into the porous cement, and cement fracture.  
The LDPM is a full 3D numerical algorithm that simulates the mechanical interaction of 
coarse aggregate pieces through a system of three-dimensional polyhedral particles, each 
resembling a spherical coarse aggregate piece with its surrounding mortar, connected 
through lattice struts.  It is capable of simulating the effect of material heterogeneity of 
the fracture processes.   

4. Validation of the ASR-ANLP relationship using laboratory data  

5. Collinear mixing of two pulses was investigated analytically. We derived a set of 
necessary and sufficient conditions for generating resonant waves by two propagating 
time-harmonic plane waves. It was shown that in collinear mixing, a resonant wave can 
be generated either by a pair of longitudinal waves, in which case the resonant mixing 
wave is also a longitudinal wave, or by a pair of longitudinal and transverse waves, in 
which case the resonant wave is a transverse wave. In addition, we obtained closed-form 
analytical solutions to the resonant waves generated by two collinearly propagating 
sinusoidal pulses. The results show that amplitude of the resonant pulse is proportional to 
the mixing zone size, which is determined by the spatial lengths of the input pulses. 
Finally, numerical simulations based on the finite element method and experimental 
measurements using one-way mixing were conducted. It is shown that both numerical 
and experimental results agree well with the analytical solutions.  

6. The correlation between the moisture content in cement mortar and ultrasonic wave 
propagation is experimentally determined. Specifically, effects of moisture on the 
ultrasonic phase velocity and attenuation are examined. It is found that, for the cement 
mortar samples considered in this study, moisture has negligible effect on the ultrasonic 
phase velocity.  



NEUP CFP-12-3736 Final Report   11/30/2015 

 

4 
 

7. The response of large specimens 4” X 4” X 10” was simulated. It was found that the 
linear assumption of Alkali diffusion is very crude and results in an excessive expansion 
in large specimens if the same diffusion coefficient was used. So, and improved 3D 
nonlinear diffusion model was implemented and adopted. After calibration, ASR 
expansion and ANLP simulations were performed on both, small and large specimens. 
The details are listed here. Physics-based models for ASR damage evolution is 
introduced.  

8. Conducted experimental measurements of the rate of ASR reaction under different 
temperatures and alkaline concentrations. The experimental data were then use to 
estimate the ASR reaction activation energy. These results are necessary input to building 
a predictive model for ASR damage evolution.  

9. Conducted experimental measurement of alkaline solution diffusion in hydrated cement 
paste and microcopy has been implemented to see if ASR occurred around a glass ball.  

10. Developed a model to simulate the transport of ASR gel in concrete. The model 
combines the widely used Biot's two-phase medium theory and Terzaghi's effective stress 
theory. The equality of macroscopic smeared-out deformation of both the solid and fluid 
phases is the same as in Biot's theory, but a major difference from Biot's theory is that the 
growth of fluid mass precludes applying the condition of equal strain in both phases. The 
model presented here should be applicable to any constitutive model for tensile softening 
damage.  

 
11. Investigated alkalinity-dependent moisture diffusivity in cement mortar.  

12. Developed a micromechanics-based model to simulate the effects of ASR induced 
microcracks on ultrasonic propagation.  

13. Developed a model and a measurement technique for mixing of two co-directional 
Rayleigh surface waves in a nonlinear elastic material.  

14. Simulated creep deformation and its effects on ASR damage.  

15. Conducted ultrasonic measurements on concrete samples with various degrees of ASR 
damage. The samples were provided by EPRI. Preliminary ultrasonic measurements 
show that, when compared with the control samples, there is about 15% ~ 20% drop in 
ultrasonic phase velocity in samples with ASR damage. This is consistent with our 
modeling predictions.  

16. Simulated ASR reaction and ASR induced damage using the microplane model combined 
with creep. Creep is modeled by using the B3 model. Also, various experimental data 
were used to verify the validity of the microplane model.  

17. Microcracks are typically observed during ASR damage. To characterize such ASR 
induced microcracks, we developed micromechanics models to estimate the frequency-
dependent tensile and compressive elastic moduli of elastic solids containing randomly 
distributed two-dimensional microcracks. The crack faces are open under tension and 
closed under compression. When the crack faces are closed, they may slide against one 
another following the Coulomb’s law of dry friction. The micromechanics models 
provide analytical expressions of the tensile and compressive moduli for both static and 
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dynamic cases. It is found that the tensile and compressive moduli are different. Further, 
under dynamic loading, the compressive and tensile moduli are both frequency dependent. 
As a by-product, the micromechanics models also predict wave attenuation in the 
dynamic case. Numerical simulations using the finite element method are conducted to 
validate the micromechanics models. 

18. ASR Samples have been produced and volume expansion of each sample has been 
measured. Nonlinear acoustic parameter for attenuated media has been introduced and 
wave velocity, attenuation and material nonlinearity measurements with ASR prisms 
have been conducted. To quantify amount of ASR gel, microscopy and image analysis 
were implemented. Compressive strengths of damaged samples were measured.  

19. ASR reaction considered in more general and real conditions, means structures that they 
exposed to drying environment and structure would go under combination of different 
phenomena. These different phenomena can be listed as, a) Expansion due to ASR, b) 
Diffusion of moisture due to lower humidity of environment, c) Decreasing of humidity 
due to drying and self-desiccation, d) Shrinkage of structure due to decreasing humidity 
and e) Deceleration of ASR reaction due to decreasing of humidity. All of these different 
effects were considered combined together in order to find real and comprehensive model 
for predicting ASR induced damage and expansion. This model would be able to analyze 
structures in real conditions. Therefore, this model would be much more practical and it 
can be used for nuclear structures that they are exposed to environment without any 
sealing. 

 
20. We conducted a systematic study using a series of ultrasonic techniques to 

nondestructively evaluate (NDE) the damage induced by alkali-silica reaction (ASR) in 
concrete. The study was conducted on concreate prism samples that contained reactive 
aggregates and were subjected to different ASR conditioning. The ultrasonic NDE 
techniques used in the study included measuring wave speed, attenuation and the acoustic 
nonlinearity parameter. Results of the study show that ASR damage reduces wave speed 
and increases wave attenuation in concrete. However, neither wave speed nor attenuation 
is sensitive enough to ASR damage to be considered a good measure for quantitative 
NDE of ASR damage in concrete. The acoustic nonlinearity parameter, on the other hand, 
shows greater sensitivity to ASR damage, can thus be used to track ASR damage in 
concrete nondestructively. However, due to the significant attenuation caused by ASR 
induced microcracks and scattering by the aggregates, attenuation measurements need to 
be conducted in order to accurately measure the acoustic nonlinearity parameter. Finally, 
destructive tests were also conducted in this work to measure the compressive strength of 
the concrete prisms subjected to different ASR conditioning. It is found that the measured 
acoustic nonlinearity parameter is well-correlated with the reduction of compressive 
strength induced by ASR damage.  

21. We also investigated the feasibility of using nonlinear Rayleigh surface waves to evaluate 
the full-scale concrete slab for ASR damage. Our results show that the nonlinear surface 
wave technique is capable of detecting ASR damage with far greater sensitivity than that 
of any conventional linear ultrasonic techniques used for evaluation of ASR damage. 
More importantly, the nonlinear surface wave technique enables large area inspection 
with only one-side access. This makes it a field-deployable technique.  
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22. A diffusion- and creep-based chemo-mechanical model for calculating the evolution of 
damage caused in concrete and concrete structures by the alkali-silica reaction (ASR) is 
developed. First the model of Bazant and Steffens for the diffusion controlled kinetics of 
ASR is outlined, to be used for calculating the rate of production of the ASR gel within 
the aggregate. The next step is the formulation of a nonlinear diffusion model for the 
penetration of gel into the micro- and nanopores in mineral aggregate grain, into the 
interface transition zone (ITZ) and into the microcracks created in the cement paste of 
mortar. The gel that penetrates the pores and cracks in cement paste is considered to 
calcify and stop expanding. A novel point, crucial for unconditional numerical stability of 
time step algorithm, is that the diffusion analysis is converted to calculating the pressure 
relaxation at constant gel mass during the step. The gel expansion in the aggregate and 
the ITZ causes fracturing damage in the concrete, which is analyzed by microplane model 
M7, into which the aging creep of broad retardation spectrum is incorporated. The gel 
and the damaged concrete are macroscopically treated as a two-phase (solid-fluid) 
medium, which is non-standard because of load-bearing but mobile water in nanopores. 
The condition of equilibrium between the phases is what mathematically introduces the 
fracture producing load into the concrete. Depending on the stress tensor in the solid 
phase, the cracking damage is oriented and the expansion is directional. The creep is 
found to have a major mitigating effect on multi-decade evolution of ASR damage, and is 
important even for interpreting laboratory experiments. A stable explicit algorithm of  
time integration of the ASR problem is formulated. Finally, to validate the model, 
successful fits of various test data from the literature are demonstrated. 

 

II. Publications during the Past Three Years 

1. Ju, Taeho, Shuaili Li, Jan Achenbach, and Jianmin Qu, 2015, "Effects of moisture on 
ultrasound propagation in cement mortar." In 41ST Annual Review Of Progress In 
Quantitative Nondestructive Evaluation: Volume 34, vol. 1650, pp. 1409-1414. AIP 
Publishing. 

2. Bazant, Z.P., Donmez, A., Masoero, E., Rahimi Aghdam, S. (2015). ``Interaction of concrete 
creep, shrinkage and Swelling with Water, Hydration and Damage: Nano-Macro-Chemo." 
Proc., CONCREEP-10 (10th Int. Conf. on Mechanics and Physics of Creep, Shrinkage and 
Durability of Concrete and Concrete Structures, held in Vienna, Austria, Sept.), publ. by 
ASCE, Washington, D.C., pp. 1--10 (plenary lecture). 

3. Zhao, Y., Qiu, Y., Jacobs, L.J. and Qu, J., 2015, “Frequency-Dependent Tensile and 
Compressive Effective Moduli of Elastic Solids with Distributed Penny-Shaped Microcracks,” 
Acta Mechanica, accepted for publication. 

4. Zhao, Y., Qiu, Y., Jacobs, L.J. and Qu, J., 2015, “Frequency-Dependent Tensile and 
Compressive Effective Moduli of Elastic Solids with Randomly Distributed Two-
Dimensional Microcracks,” J. Appl. Mech., accepted for publication. 
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III. APPENDIX  

III.1 Report of the 1st year  

III.1.1 Nonlinear Wave Mixing Technique to Measure the ANLP in Concrete Samples 
Nondestructively in a Laboratory Environment 

Nonlinear Mixing Wave Theory 

One-dimensional longitudinal wave motion in a nonlinear solid is governed by the 
equation below 

  
22 2

2 2 2

1

2

u u u

c t x x x

               
  ,                              (1) 

where c is the longitudinal wave velocity, u is the displacement, and  β is the acoustic 
nonlinearity parameter. Since the nonlinearity parameter β is related to the  material 
damage, it should change with the ASR damage in cement-based materials. To measure the 
β change, we use the co-linear mixing wave method.  

 Suppose an ultrasonic wave consists of two frequencies 1  and 2  as, 

  1 1 2cos cos
x x

u U t V t
c c

                      
  , (2) 

where U and V are, respectively, the displacement amplitude of these two frequency 
components. As the wave propagates through the test sample, ASR damage in the sample 
causes these two frequency components to interact, resulting in a mixed wave field whose 
amplitude is proportional to β,  

 

 

   

   

1 2 1 2
2 1 2 1 22 2

2 2 2 2
1 2

1 22 2

cos cos
4 4

       cos 2 cos 2
8 8

UV UVx x
u x t x t

c c c c

U Vx x
x t x t

c c c c

    

  

                        
                     

(3) 

In this work, we will focus on the first term in the high-hand side of (3), i.e., 

   1 2
2 1 22

cos
4d

UV x
u x t

c c

           
  . (4) 

By measuring the amplitude 2du , one can obtain the acoustic nonlinearity parameter 

  2du

UV
  .  (5) 

This way of measuring the acoustic nonlinear parameter β is called the nonlinear wave 
mixing (NWM) method. 

Experimental Methods 
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Sample preparation: 
Mortar bar samples were prepared using the procedure described by AASHTO T 303 

[1]. The fine aggregates used are the Placitas 67 Blend from Lafarge Company. The cement 
used is the type I cement (potential Bogue composition 46.11% C3S, 22.93% C2S, 8.52% 
C3A and 9.59% C4AF and 0.83% Na2Oeq).  

Three thicker 285×100×100mm (111/4×4×4in), and six thinner 285×25×25mm 
(111/4×1×1in) mortar bars were casted.  These samples are named, respectively, L1, L2 and 
L3 for the thicker ones, and S1 – S6 for the thinner ones. To cure the samples, molds with 
the concrete mix in them were placed in a chamber with 100% relative humidity at 23 ºC 
(73.4 ºF) for 24 hours. After demolding, the samples were immersed in tap water and placed 
in an oven at 80 ºC (176 ºF) for another 24 hours. The first set of expansion and nonlinear 
ultrasonic measurement were then taken on these as cured samples to obtain the initial 
values. These values were used as the baseline to normalize the subsequent measurements. 
To induce ASR damage, the thinner samples S1, S2 and S3 and the thicker samples L1 and 
L3 were immersed in a 1N NaOH solution at 80ºC (176 ºF), per the procedures described in 
AASTHO T 303 [1]. These samples were taken out of the solution at regular intervals for 
expansion and nonlinear ultrasonic measurements. The rest of the samples were left in an 
ambient room environment with 50%RH and 230C. 

Measurements: 
A schematic of the collinear beam-mixing measurement setup is shown in Fig. 1. Two 

incident waves of different frequencies are generated simultaneously by the function 
generator.  One has a frequency of 1  (0.75MHz) with 18 cycles and the other has 

frequency of 2  (1.25MHz) with 30 cycles , so both waves have the same duration. After 

amplification, these signals are sent into a high oass filter with a cut off frequency of 0.7 
MHz to remove low (< 0.7 MHz) frequency components in the incident waves, which might 
be generated by the amplifier.. An example of the frequency spectrum of the electrical 
signal sent to the transmitter is given in Fig. 2. Clearly, the signal has negligible frequency 
component below 0.6MHz.  

 

FIGURE 1. Experimental setup 

The filtered signals are then sent to the broadband PZT transducer with the central 
frequency of 1MHz attached to one side of the sample. The two incident waves propagate 
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through the material and a new longitudinal wave at their difference frequency ( 1 2   = 

0.5 MHz) is generated along the wave propagation distance. Since the two incident waves 
propagate in a ‘phase matching’ fashion, the newly generated wave is a resonance wave, i.e., 
its amplitude increases with propagation distance. This resonance wave is received by 
another longitudinal wave receiver attached to the other end of the bar.  The receiver has a 
center frequency of 0.5MHz and is recorded by a Tektronix TDS 5034B oscilloscope. After 
that, the digitized time-domain signal is sent to a PC for post signal processing. During the 
ultrasonic measurement, a high-vacuum grease was used as a couplant between the 
transducer and the sample. A force sensor is used to ensure that the transducers were 
clamped to the sample with the same pressure for all tests. After each measurement, the 
sample was cleaned with soap and tap water to remove any residual couplant. Ultrasonic 
measurements are taken on three different locations in the thicker samples L1, L2 and L3 as 
shown in Fig. 3. 

 

FIGURE 2. FFT of filtered signal 
 

FIGURE 3. Locations of ultrasonic 
measurement on L1-L3 

The PZT transducer converts the electrical signal into a propagating ultrasonic wave 
field in the mortar bar. This wave field consists of two frequency components as indicated in 
Eq. (2) and shown in Fig. 2. As the waves propagate, they interacts with the ASR damage 
in the sample. This interaction generates the mixed wave fields that consists of several 
different frequency components. One of these frequency components is 1 2( )  at 

0.5MHz. The amplitude of this frequency component 2du  can be obtained by performing 

a Fourier transform of the received signal. Once 2du  is measured, the ultrasonic nonlinear 

parameter β can be calculated from Eq.(5), since U and V are known input.  
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FIGURE 4a. FFT of received signal 
on day 0 

 

FIGURE 4b. FFT of received signal on day 
10 

Subsequent ultrasonic measurements were conducted at about the same time each day 
during the immersion. As an example, the frequency spectra of the received signals for day 
0 and day 10 in L1 sample are shown in Figs. 4a and 4b, respectively. It is seen that (i) the 
amplitude ratio of resonance wave at 0.5MHz over one of the principal beam at 0.75MHz 
increases over time, a sign of increased acoustic nonlinearity parameter β; and (ii) the 
amplitude corresponding to 0.75MHz decreases over time, a sign of increased attenuation. 
Such increase in attenuation is frequency dependent, and can be accounted for by measuring 
the decay in the fundamental waves over time. 

Results and Discussion 

Expansion Measurement and Results 
The immersed samples were taken out each day for the expansion measurements per 

the procedures described in AASHTO T 303 [1]. Results of the expansion per unit length for 
all samples are plotted in Figs. 5a and 5b as functions of the number of days under the 
exposure of alkali solution. 

It is seen that samples immersed in the alkali solution all expanded. According to 
ASTM1260, if the expansion of thinner samples is more than 0.2% after 14 days immersed 
in alkali solution, it is considered potentially deleterious expansion[2]. Based on this 
criterion, our expansion measurement data show that the aggregate used in our test, the 
Placitas 67 Blend from the Lafarge Co. in New Mexico, is considered fairly alkali–silica 
reactive. It is also seen that the samples kept in the room environment did not expand at all. 
If any, there seems to be some shrinkage, possibly due to the experimental errors.  

Comparison between Figs. 5a and 5b shows that the thinner samples have much large 
expansion than the thicker samples under the same exposure time. A plausible explanation 
of this difference is that the ASR damage across the bar’s thickness is nonuniform. The 
damage is more severe near the sample surface and gradually decreases toward the center of 
the samples. Such non-uniformity is controlled by the rate of diffusion of water into the 
concrete. The diffusion rate-controlled process means that the center region of the thicker 
samples may not have been damaged yet during 14 days of exposure. In other words, after 
14 days of exposure, the thicker samples may still contain a core of un-damaged concrete, 
which limits the axial expansion of the bar. 
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FIGURE 5a. Expansion of thinner 
samples 

 

FIGURE 5b. Expansion of thicker 
samples 

Ultrasonic Measurement Results 

After each expansion measurement, ultrasonic tests were also conducted on each 
sample using the NWM method. As indicated in Fig. 3, the ultrasonic tests were conducted 
at three locations on each sample. It follows from Eq.(5) that the normalized acoustic 
nonlinearity is given by 

  2

0 2 0

d

d

u

u




    , (6) 

where the quantities with subscript 0 are those measured before the samples were immersed 
in the alkaline solution (day 0). After accounting for the attenuation, the measured acoustic 
nonlinearity parameter   normalized by the day 0 value as defined in Eq.(6) is plotted in 
Fig. 6a for all three thicker samples. We note again that these values are the averages of 
measurements from all three locations on each sample. To show the scattering of the data, 
Fig.7 is plotted with error bars. Since ultrasonic measurements were conducted by taking the 
transducers off at one location, and putting them back on at at a different location, these 
error bars can also be considered the upper limit of the uncertainties associated with the 
measurements. 

It is seen clearly from these plots that (1) the NWM method yields consistent and 
repeatable results, (2) the acoustic nonlinearity parameter increases with exposure time, and 
(3) the acoustic nonlinearity parameter is much more sensitive to ASR damage than the 
volumetric expansion. 
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FIGURE 6a.   averaged over 3 
locations in thicker samples 

 

   FIGURE 6b.   in thinner sample S1 

         

FIGURE 7. Error bars showing the variation of   for samples L1 and L2, L2 and L3. 

We note that results from both the ultrasonic and the expansion measurements seem to 
indicate that sample L1 has more ASR damage than sample L3, although both samples were 
made of the same materials, and were subjected to the same exposure condition.  However, 
since these two samples were from two different batches of concrete mix, we speculate that 
the amount of aggregate in these two samples may not be exactly the same. 

Recall that the expansion results show that the thinner samples have much larger 
expansion than the thicker ones. The reason for such difference was explained on the basis 
of non-uniform ASR damage across the thickness of the sample. It was argued that ASR 
damage is controlled by the moisture diffusion so that even after 14 days of exposure, the 
moisture still has not progressed all the way through the thickness of the thicker samples 
yet, i.e., there is still a core of undamaged concrete in the thicker samples. This argument is 
further corroborated by the ultrasonic measurement results. Shown in Fig. 6b is the 
measured acoustic nonlinearity parameter β of the thinner sample S1. Comparison of Figs. 
6a and 6b shows that, although the expansion is very different between the thinner and 
thicker samples, the measured acoustic nonlinear parameter β is almost the same. The reason 
for this is clear if we assume that in the thicker sample, there is a core of concrete that has 
not been reached by the moisture, therefore, has no ASR damage, and the thickness of the 
ASR damaged outer shell is about one half of the total thickness of the thinner sample. Since 
the the increase of normalized β ( ) is only related to the region where ASR damage 
occurs, the measured acoustic nonlinearity parameter β has similar amount of increase in 
thicker samples and thinner sample after 14 days exposure to alkali solution. 
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Conclusions 

The results clearly demonstrated the feasibility of using nonlinear ultrasonic techniques 
to track the progress of ASR damage in cement-based materials. This is significant in that 
nonlinear ultrasonic techniques have a number of unique advantages over the existing 
methods of characterizing ASR damage. 

First of all, compared to the linear relationship between the expansion and exposure 
time, the acoustic nonlinearity parameter shows a stepped relationship with respect to 
exposure time as shown in Fig. 6a. Although more research is needed to understand the 
significance of these “steps”, it is plausible that such “steps” might be related to the different 
ASR damage modes. Secondly, as discussed before, the expansion of the concrete bar 
depends on the thickness of the sample. This means that the expansion-based methods, such 
as AMBT, the CPT, and ACPT, are not measuring the intrinsic characteristics of the ASR 
damage. On the other hand, nonlinear ultrasonic methods, such as the NWM method used 
here, measure the acoustic nonlinearity parameter which is a signature intrinsic to the state 
of ASR damage. Therefore, measurements from the NWM method are independent of the 
sample size as shown by our results. Last but not the least, unlike other existing nonlinear 
ultrasonic methods, the NWM method could detect the ASR damage at arbitrary locations. 
This could lead to ASR damage scan in the future. 

The abilities of the nonlinear ultrasonic methods to provide the spatial variation, 
identify the different stages of ASR damage and to track the intrinsic characteristics of the 
ASR damage make such methods potentially useful tools for rapid screening of aggregates 
for ASR reactivity in the lab, and for field assessments of ASR damage in existing concrete 
structures. 
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III.1.2 Physics-Based Models for ASR Damage Evolution 

Physicochemical Modeling 

Configuration of the microstructure: 
The reactive aggregate and the representative volume element (RVE)  of concrete 

surrounding the reactive aggregate are assumed to be spherical [3]. The basic element of the 
microstructure in Fig. 1 is then a composite sphere composed of two different phases in 
which the ratio of radii Ra/RREV

a is a constant. Thus the basic element is independent of the 
absolute size of the spheres. 

 

FIGURE 1. Definition of the Relative Elementary Volume for different reactive aggregate 
sizes 

Mathematical model for diffusion of alkali ions: 
To compare with our former experiment [4], two kinds of mortar samples with the 

dimension of 25×25×285mm (1×1×111/4in) and 100×100×285mm (4×4×111/4in) 
respectively are considered in our numerical simulations. Alkali ions penetrating from the 
specimen boundary into the concrete is considered as macro-diffusion process. Symmetry of 
mortar bars leads to two-dimensional diffusion problem governed by the 2D Fickian 
Equation [5], 

  2 2 2 2
, ,( ) ( / / )x y t xy

C
D C x C y

t


      


                                        

    (7) 

where C is the alkali ion concentration, and Dxy is the diffusivity of alkali ions at 80°C [2].  

 

FIGURE 2. Ion diffusion in small and large mortar samples after 14 days 
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Suppose the alkali ions penetrate with moisture, then Dxy can be determined by 
experimental measurements as described by Shen [5]. From Eq.(1), one can obtain the ion 
concentration ( , , )C x y t . As a result, after 14 days, the alkali ions has penetrated thoroughly 
in small mortar sample, while there is still a very large core in large mortar sample that the 
ion has not penetrated in as shown in Fig. 2. Note that the alkali ion concentration at the 
boundary of mortar sample is C0=0.1 mol/liter of solution [6]. 

In our samples, the size of aggregates varies from 0.225mm to 3.56mm [2].  To 
compute the ion concentration near each aggregate, each mortar bar is divided into several 
layers with layer thickness of 5.34mm. As a result, there are three layers in small samples 
and nine layers in large samples. For simplicity, the ion concentration within each layer is 
assumed uniform and equal to the value at the middle point of each layer. 

The micro-diffusion is the diffusion of alkali ions into the aggregate. This process can 
be described by Fick’s law in spherical coordinate as, 

  ( )ion
ion ion ion

C
B D C

t


  


   (8) 

where Cion is the free ion concentration of the pore solution inside the aggregate. Bion and 
Dion are the binding capacity and ion diffusivity of the aggregate, respectively. The initial 
condition is Cion = 0 for t = 0 in the aggregate. The boundary condition is Cb = C(t) at the 
surface of aggregate, and ∂Cion /∂r = 0 at the center of the aggregate particle. Eq.(2) can be 
solved numerically using the finite difference method. 

The ASR process takes place within the surface layer of each aggregate particle, where 
Cion reaches a certain concentration level Ccrt. One can inversely determine the thickness of 
the ASR layer, r, from the numerical solution of Eq.(2). The volume of the reacted portion 
of the aggregate particle of radius Ra can then be calculated, 

  
3 3

3
3

( ) 4
[ ]( )

3
Ra a a

a a
a

R R r
V R

R
 

  (9) 

This volume is is converted into the volume of ASR gel, Vgel
Ra, 

  Ra Ra
gel aV V     (10) 

where η is the coefficient volumetric expansion from aggregate to ASR gel.  

Mathematical model for permeation of ASR gel into the surrounding cement: 
Because of the volumetric expansion when the aggregate is converted into ASR gel, 

the gel causes internal pressure near the interface zone between the aggregate and the 
surround cement.  This pressure pushes the gel into the pores around this interface zone.  
As more pores nearby are filled up with the gel, the pressure increases. which deformed the 
concrete.  The mount of gel that is capable of generating the internal pressure is given by 

  ,
Ra Ra Ra

gel eff gel poreV V V      (11) 

where Vpore
Ra is the total volume of pores in the surrounding interface zone that can be 

calculated using, 
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  Ra Ra
pore unit aggV V A  (12) 

where Vunit is a material constant (a length scale) representing the capacity of the porous 
zone to absorb ASR gel per unit area, and Aagg

Ra is the surface area of an aggregate particle 
of size Ra. When the effective gel volume Vgel,eff

Ra is larger than zero, the ASR gel begins to 
permeate. This process can be characterized by Darcy’s law for viscous flow as, 

  ( )gel gel
gel

gel

C
P

t





  


 (13) 

in which Cgel and ηgel are the concentration and viscosity of the gel, respectively, κgel is the 
gel permeability of the porous cement paste, and Pgel is the pressure distribution of the gel, 
which depends on the degree of saturation of the pores. At the boundary, the interface 
pressure, Pint, is applied. However, as Pint is an unknown and a function of time, it needs to 
be calculated simultaneously from the equilibrium of the composite system (see micro-
mechanical modeling), the diffusion of ions, and the permeation of the gel. So this is a 
coupled chemo-mechanical problem. 

In order to solve the coupled equations, a state equation must be introduced, which 
relates the concentration of ASR gel in the pores, Cgel, the gel pressure Pgel, 

  gel gelC P   (14) 

where β is the state function for cement paste [6]. The initial condition is Cgel (r, 0) = 0. The 
boundary condition at the interface is Cgel (Ra, t) = βPint(t), and at the far field is Cgel (RREV

a, t) 
= 0. Eq.(13) can then be solved numerically using a finite difference method for the gel 
concentration as a function of radius and time, Cgel (r, t). The gel volume in the porous 
cement paste can then be evaluated by integrating the gel concentration over the surrounding 
cement paste, 

  24
a
REV

a

RRa
pg gelR

V r C dr    . (15) 

The coefficient of expansion for the aggregate with radius Ra due to ASR is thus, 

  ,
1

Ra Ra Ra Ra Ra Ra
gel gel eff pg gel pore pg

Ra Ra Ra
a a a

V V V V V V

V V V


   
    (16) 

Micro-Mechanical Modeling 

Three-phase expansion model: 
By a standard homogenization argument, the micro-structural configuration shown in 

Fig. 1 can be considered equivalent to that shown in Fig. 3, where phase 3 is the effective 
homogeneous medium equivalent to the heterogeneous medium in Fig. 1. Following the 
three-phase expansion model developed by Jin et al [7], one can obtain the effective 
expansion coefficient for the two-phase composite as well as the interface pressure between 
the aggregate and cement paste. For brivity, we only list the results here, and details can be 
found in [6]. The effective expansion and interface pressure can be written as, 
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  1
1

1

(3 4 )

(3 4 ) 4 ( )
a SC SC

eff
SC a SC SC SC a

K V K G

K K G V G K K
 


  

 (17) 

  1
int 1

1

12 (1 )

4 ( ) (3 4 )
a SC SC

SC a SC SC a SC

K G K V
P

V G K K K K G



  

 (18) 

where Ka, KSC are the bulk modulus of aggregate and cement paste matrix, respectively, GSC 
is the shear modulus of the cement paste, and V1 = Ra

3/ (RREV
a)3 is the volume fraction of 

aggregate. 

 

 (a)   (b) 

FIGURE 3. (a) Three phase expansion model and (b) its mechanical properties 

 

The unknown parameter in Eq. (17) and (18) is the expansion coefficient of 
aggregate due to ASR, α1, which can be evaluated by Eq.(16). As one can see, both α1 and 
Pint involve the ASR gel formation due to alkali ion diffusion and the ASR gel permeation 
driven by interface pressure Pint. 

Damaged RVE: 
 

 

FIGURE 4. Mechanical property of damaged REV 

Since the Young’s modulus in cement paste matrix is much lower than in aggregate, 
crack will initiate at the boundary and propagate into the cement paste matrix. According to 
the Griffith criterion, the critical pressure for crack initiation can be obtained, 
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( )

SC IC
cr

a r

E G
P

R c



 (19) 

where ESC is the Young’s modulus of cement paste, GIC is the fracture energy of concrete, cr 
is the initial crack length in the cement paste. Once the interface pressure Pint exceeds the 
critical pressure Pcr, crack starts to propagate which causes a decrease in the modulus. This 
can be described by a damage parameter [3], which is defined by, 

  CZ a
a
REV a

R R
d

R R





  (20) 

where RCZ represents the crack front as shown in Fig. 4. The modulus of the equivalent 
medium Ed can then be determined, 

  (1 )d SCE d E   (21) 

The newly generated cracks also increase the volume of the RVE.  The amount of 
volume expansion induced by crack growth is given by, 

  1(1 )
1a

REV

pnew p
C

pnewR

c cV
V

V c



   


 (22) 

where 34
3 ( )a

REV

a
REVR

V R  is the volume of the RVE, cp and cpnew are the porosity of cement 

paste matrix before and after crack opening respectively. The total expansion is the linear 
superposition of αeff and αC, i.e.,  αtotal

Ra =αeff
Ra +αC

Ra. Since the ASR induced expansion of 
aggregate is size dependent [6], the overall ASR expansion of concrete must be determined 
as the volumetric average of ASR expansion of the RVE with different sizes. For each 
aggregate, the final expansion should also include the volumetric average of each layer as 
described in macro-diffusion process. Thus the overall expansion is, 

  ,
a Ra

total a i total i      (23) 

where a  is the volume fraction of aggregate with size Ra, 
a
i  is the volume fraction of 

each layer for a fixed aggregate size Ra, and ,
Ra
total i  is the ASR expansion of the concrete 

located at the ith layer with the aggregate size Ra. 

Equations (1)-(23) form a complete model for ASR expansion. It is unlikely to solve 
the problem analytically because the diffusion and the permeation of gel are coupled with 
the interface pressure. Instead, a piecewise numerical procedure is adopted. More details can 
be found in [6]. 

Compare Numerical Results with Experiments 

Since the only unknown parameter in our numerical calculation is the crack opening 
speed, a set of ASR expansion measurements in small mortar samples are used to fit this 
model and determine this parameter.  It is then used to predict the expansion of other 
samples. As shown in Fig. 5, the expansion calculated by the model based on Eq. (23) (red 
solid line) has the same trend as in experiment measurements. 
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FIGURE 5. Expansion in small mortar samples with comparison to numerical calculation 

 

Following Cantrell’s theory [8], the acoustic nonlinearity parameter in materials with 
dilute distribution of microcracks can be written as, 

  
4 3 2
0 11 '

0 1 03 2

24
| | ( / 7)

5
mp crkL R A

N
b

   



    (24) 

where β0 is the original material nonlinearity before cracking, σ1 is the initial stress, N0
crk is 

the crack density, and other parameters are all material constants. To avoid the complexity 
of determining these material constants, we assume that, 

  1 0
0

1 | | (1 ) crkN
   


      (25) 

where   is the normalized acoustic nonlinearity parameter reflecting the nonlinearity 

change, 1| |  is the initial stress (comparable to interface pressure) normalized by its 

maximum value, 10 | | 1  , and 0
crkN  is the crack density (comparable to damage 

variable d) normalized by its maximum value, 00 1crkN  . For a reasonable approximation, 

the weight parameter   is taken in the range: 0 0.5  . 

Following an equation similar to Eq.(23), one can obtain the volumetric averaged 
interface pressure and damage variable d up to 14 days exposure time as shown in Fig. 6(a) 
and (b). As one can see, in both samples, the damage becomes obvious around day 6, and 
afterwards, in small sample, it shows a linear increase; while in large sample, the damage 
shows a faster increase after 12 days. This is because in large sample, alkali ions have only 
penetrated into the outer layers after 14 days as shown in Fig. 2. As more and more ions get 
into the large sample, the cracks accumulate, and as a result, the damage shows a faster 
increase after 12 days. 
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FIGURE 6. Volumetric averaged (a) interface pressure and (b) damage variable d in both 
mortar samples 

 

  

FIGURE 7. Predicted and measured variation of   in (a) small and (b) large mortar 
samples 

The predicted variation of   in both small and large mortar samples can be obtained 
from Eq. (25) as shown in Fig. 7(a) and (b) respectively. By comparing with experimental 
measurements, we observe in small mortar sample, when α=0, the predicted curve compares 
well with experimental measurements. This is because the small sample has damage 
everywhere after 14 days, the nonlinearity change is microcrack dominated. While in large 
sample, this is not the case. As shown in Fig 7(b), when α=0.2 or 0.3, the predicted curve 
matches better with experimental measurements. One possible explanation is that in large 
samples, since alkali ions have not penetrated thoroughly after 14 days, the interface 
pressure also contributes to the nonlinearity change. However, the results in both samples 
show that this numerical model can effectively predict the nonlinearity parameter jump at 
both day 7 and day 12. These jumps may indicate different damage stages during ASR 
process. Before day 6, since the ASR damage is only limited to the interface pressure built 
up,   increase is very slow. After day 6, due to the rise of crack density,   increase is 
accelerated. Finally after day 11, more cracks are formed which further reduces the Young’s 
modulus.  Consequently, there is another jump of  . So in all, our numerical model 
seems to be capable of predicting the acoustic nonlinearity change. 
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Conclusions 

This paper presents a new model to predict acoustic nonlinearity change during ASR 
damage. This new model includes a chemo-mechanical model, a micromechanical model 
and a fracture model. These models are tightly coupled. In the fracture model, a damage 
variable is introduced to simulate crack opening. The interface pressure and damage variable 
are then used to calculate the acoustic nonlinearity change. The results of numerical 
prediction and experimental measurements are in good agreement. Although more 
experiments on aggregates with different activities are needed to further validate this model, 
the present work has shown that the proposed method has a good potential to quantitatively 
predict the acoustic nonlinearity variation during ASR damage and can be used to guide 
experimental measurements in the future.  
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III.1.3 Physics-Based Models for ASR Damage Evolution Collinear Mixing of Two 
Transient Pulses in Nonlinear Elastic Solids 

INTRODUCTION 

 When two elastic waves propagate and meet in a linear medium, the equations of motion are 
linear and the two elastic waves do not interact, i.e., there will be no scattering of wave by wave 
and the total wave field is simply the superposition of these two wave fields. On the other hand, 
if we consider the quadratic or higher order terms of displacement in the stress-strain 
relationship, the equations of motion become nonlinear (Jones and Korbett, 1963) and scattering 
of elastic wave by wave happens(Rollins et al., 1964; Taylor and Rollins, 1964). 

 Generally, the interaction of two elastic waves produces both “sum” and “difference” 
frequency waves. Under the phase matching condition (Jones and Korbett, 1963), the second 
order waves will be resonant (synchronous interaction). This phenomena was observed 
experimentally (Rollins et al., 1964; Johnson et al., 1987; Johnson and Shankland, 1989; 
Croxford et al., 2009) and approved theoretically by both steady state Green’s function approach 
(Jones and Korbett, 1963) and quantum-mechanical analysis (Childress and Hambrick, 1964), in 
which the interaction of two elastic waves is called, by analogy with Raman scattering of light, 
Raman scattering of sound by sound (Zarembo and Krasilnilnikov, 1971). 

 Most of the existing work investigates the steady state interaction of two monochromatic 
waves, i.e., the two primary waves are all of single frequency in frequency domain and infinite 
length in time domain. On the other hand, as we know that, many experiments in solid-state 
physics use transient pulses as excitations which usually have a finite time length as well as a 
finite bandwidth of frequency.  As a result, solutions that include the transient analysis are 
needed. 

 In this paper, we will investigate the interaction of two transient elastic waves. Without loss 
of generality, a special case, in which a longitudinal wave and a shear wave are mixed in a 
collinear (opposite) direction is considered. The potential of this collinear mixing technique in 
detecting the spatial distribution of nonlinearity by timing the transducers is also discussed. 

PROBLEM STATEMENT 

 Assume that a shear transducer located at y = 0 generates a shear pulse 1u  with amplitude 

U and central frequency T  in the positive y-direction and a longitudinal transducer located at y 

= L generates a longitudinal pulse 1v  of amplitude V and central frequency L  in the negative 

y-direction, see Figure 1. The expressions of 1u  and 1v  can be written as 

       1 sinT T T T T
T T T

y y y
u U H t H t t

c c c
    

        
                        

, (26) 

       1 sinL L L L L
L L L

y L y L y L
v V H t H t t

c c c
    

          
                        

, (27) 
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where H is the Heaviside step function, L is the thickness of the sample, Tc  is the shear wave 

velocity, Lc  is the longitudinal wave velocity, T , T  and L , L  are the delay time and 

duration of the shear pulse and the longitudinal pulse, respectively.  

 

Figure 1 Collinear mixing (opposite direction) of two elastic waves 

 For simplicity, we neglect the absorption and the equation of motion can be written as(Liu et 
al., 2012) 

  
2 2

2 2
2 2T T T

u u u v
c c

t y y y y


     
        

 , (28) 

  
2 2 2 2

2 2 2
2 2 2 2L L L T T

v v v v u u
c c c

t y y y y y
      

  
     

 . (29) 

The second order wave 2u  can be found by direct substitution of (26) and (27) into the right 

hand side of (28) and (29). In this paper, we will focus on the generation of the second order 
shear wave with difference frequency, thus the corresponding equation can be derived by 
plugging (26) and (27) into right side of (28). The direct substation yields 

  
2 2

22 2
2 2

( , )T

u u
c f y t

t y

  
 

 
, (30) 

where

       T T T L L L
T T L L

y y y L y L
f F H t H t H t H t

c c c c
     

           
                       

          
   (31) 

  
2

( )
sin[( ) ( ) ( ) ]

2
T L T L T T L L T L

L T L L T T
L L T L

UV c c L
F t y

c c c c

            
       . (32) 

In (30), we only keep part of the driving force with difference frequency L T  . This is 

because we are only interested in the generation of second order shear wave of difference 



NEUP CFP-12-3736 Final Report   11/30/2015 

 

24 
 

frequency. The corresponding displacement on the left side of (30) is thus represented by 2u  . 

SECOND ORDER SHEAR WAVE UNDER RESONANT CONDITION 

 It can be proved that the resonance condition for 2u  in this special case as shown in Fig. 1 

is (Jones and Korbett, 1963) 

  
2 2

1
L L

T L T

c

c c

 
 

 
 

. (33) 

Under the resonance condition (33), 2u  will propagate along negative y direction and received 

by the shear transducer. Substitution of (33) into (31) - (32) yields 

       ˆ ˆ
T T T L L L

T T L L

y y y L y L
f F H t H t H t H t

c c c c
     

           
                       

          
   (34) 

  
3

2

( ) 2 ( ) 2ˆ sin[( ) ( ) ]
( )

T T L T L T L L L T T T
T T

L T L T T L T L T

UV c c c c c c c Ly
F t

c c c c c c c c c

        
    

   
. (35) 

1t  2t 

3t  4t 

T Tc

L Lc

 

Figure 2 Different stages of two wave mixing ( L L T Tc c  ) 

The corresponding 2u  generated by (34) can be solved by 

     2 2

ˆ ( , )
, ,s s

s s s s
T

f y t
u y t g y y t t dy dt

c

 

 
    , (36) 

where  ,
2

sT
s s s

T

y yc
g y y t t H t t

c

  
     

 
 is the 1D transient Green’s function of equation 
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(30). 

 In the following, we will show how to simplify (36). Without loss of generality, we assume 

L L T Tc c  . It is shown in Figure 2 that the interaction length sy  of mixing in (36) is different 

at different time st . The time when the two waves start mixing is (see (1) in Figure 2) 

  1 1
T T L L

L T

c c
t t

c c

   


, (37) 

where 1
L T

L
t

c c



 is the time when the two waves start mixing without any delay time, i.e., 

0T L   . After 1t  , the interaction length increases and eventually gets to the length of the 

longitudinal wave L Lc   (see (2) in Figure 2). The time when the interaction length is equal to 

the length of the longitudinal wave is 

  2 2
T T L L

L T

c c
t t

c c

   


, (38) 

where 2 ( ) ( )L L L Tt L c c c   . When 1 2st t t   , ( ) ( )L s L s T s TL c t y c t      . After 2t  , 

the interaction length keeps as a constant until 3t   when the front of the longitudinal pulse 

reaches the end of the shear pulse and the two pulses start separating (see (3) in Figure 2). We 
have 

  3 3
T T L L

L T

c c
t t

c c

   


, (39) 

where 3
T T

L T

L c
t

c c





.  When 2 3st t t   , ( ) ( )L s L s L s L L LL c t y L c t c         . After 3t  , 

the interaction length diminishes and eventually gets back to zero at 4t   when the two pulses 

totally separate (see (4) in Figure 2). We have 

  4 4
T T L L

L T

c c
t t

c c

   


, (40) 

where 4
L L T T

L T

L c c
t

c c

  



. When 3 4st t t   , ( ) ( )T s T T T s L s L L Lc t c y L c t c          . 

 It can be shown that, only when 1 4st t t   , the product of the two rectangular windows in 
ˆ ( , )s sf y t  is nonzero and the equation (36) can be simplified as 
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   

2

1

3

2

( )

( )

( )

2 ( )

( )

( )

ˆ ( , )

1 ˆ, ( , )
2

ˆ ( , )

T s T

L s L

L s L L L

L s L

L s L L L

T s T T T

t c t s
s s s s st L c t

T

t L c t c s
s s s s st L c t

T T

L c t c s
s s sc t c

T

y y
F y t H t t dy dt

c

y y
u y t F y t H t t dy dt

c c

y y
F y t H t t

c





 



 

 

 

  

   
  

  

 

  
  

 
  

    
 
  

   
 

 

 


4

3

t

s st
dy dt





 
 
 
 
 
 
 
 
 
 


. (41) 

 Once the condition (33) is satisfied, 2u  will propagate along negative y direction. As a 

result, we record it at the left end of the sample (y=0 ) in a real experiment. The theoretical 
expression of 2u  at y=0 can be obtained by substituting 0y   into (41) and written as  

   

2

1

3

2

4

3

( )

( )

( )

2 ( )

( )

( )

ˆ ( , )

1 ˆ0, ( , )
2

ˆ ( , )

T s T

L s L

L s L L L

L s L

L s L L L

T s T T T

t c t
s

s s s s st L c t
T

t L c t c
s

s s s s st L c t
T T

t L c t c
s

s s st c t c
T

y
F y t H t t dy dt

c

y
u t F y t H t t dy dt

c c

y
F y t H t t

c





 



 

 

 

  

   
  

   

  

 
  

 
 

    
 
 

   
 

 

 

 s sdy dt

 
 
 
 
 
 
 
 
 
 


 . (42) 

 Assume the first term in (42) is 

  
2

1

( )

1 ( )

1 ˆ ( , )
2

T s T

L s L

t c t
s

s s s s st L c t
T T

y
I F y t H t t dy dt

c c





 

  

 
   

 
  . (43) 

Clearly, (43) is a 2D integral over the triangular area ABD shown in Figure 3 The AD line is 
described by ( )s T s Ty c t   , and the line AB is described by ( )s L s Ly L c t    . The dash line 

is described by ( )s T sy c t t  , or s
s

T

y
t t

c
  . Clearly, for ( )s T sy c t t  , we have 

0s
s

T

y
H t t

c

 
   

 
. Therefore, for any ( )s T sy c t t  , the integration in (43) vanishes. tmin1, t0 

and tmax1 represent three critical values of t, at which ( )s T sy c t t   cross B, A and D, 

respectively. A simple geometric analysis gives 

  min1

2 ( ) 2 ( )

( )
T L L L T L L L T T

L T T L T

Lc c c c c c c
t

c c c c c

     
 

 
, (44) 

  0

2 ( )2 L L L T T

L T L T

c c cL
t

c c c c

  
 

 
, (45) 
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Figure 3 2D Integration  

  max1

2( ) 2 ( )L L L L L T T

L T L T

L c c c c
t

c c c c

    
 

 
. (46) 

 For min1 0t t t  , we have 

  
2

1

( )

1 11 ( )

1 ˆ ( , )
2

T s

L s L

t c t t

s s s ss L c t
T

I I F y t dy dt
c 

 

 
    , (47) 

where 1s  can be found by solving 1 1( ) ( )L L TL c s c t s     

  1
T L L

L T

L c t c
s

c c

 



. (48) 

The integration (47) can be carried out as 

  

0

3

11 02 3

0

2 ( )
[2 ( )( ) ( )] cos( )

( )sin( )
2 ( )

2 ( ) (2 ( ))
( )sin( )

( )

L L L T T
T T L T L L L T R R

L T

T T
T L T R

R L T
R T L L R L T T R L L T L T

T L T
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c c c
Lc c c c t c c c t

c c
UV

I c c c t
c c

Lc c c c c c c c
c c c
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     

   


      

         
    

         
  

,  

   (49) 

where ( )L T
R T

L T

c c

c c
 




and 0

2 ( ) 2L L L T T T
T

L T L T

c c c L

c c c c

     
 

 
. 

 For 0 max1t t t  , we have 
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2 2
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1 12 ( ) ( )

1 ˆ ˆ( ( , ) ( , ) )
2

T s T T s

L s L L s L

s c t t c t t

s s s s s s s st L c t s L c t
T

I I F y t dy dt F y t dy dt
c



 

 

    
      , (50) 

where 2s  can be found by solving 2 2( ) ( )T T Tc s c t s    

  2 2
Tt

s


 . (51) 

The integration (50) can be carried out as 
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   (52) 

 For max1t t , we have 
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and (53) can be carried out as 

  

2 0

3

13 02 3

2 ( ) (2 ( ) )
( ) sin( )

2 ( ) (2 ( ) )
( )( )sin( )

4 ( )

(2 ( )) (2 ( ) )
2 ( )sin(

( )

R L T R L L L T T
L T

L T

T T R L L R L L L T T
L T L T

R L T L T

R T L L L T T R L L L T T
T L T

T L T

L c c c c c
c c

c c

UV L c c c c
I c c c c

c c c c

c L c c c c c c c
c c c

c c c

    

       


    

    



   

    
 

    
 

 0 )

 
 
 
 
 
 
 

 
 

.  

   (54) 

 For min1t t , we have 0s
s

T

y
H t t

c

 
   

 
.  Thus 1 0I  . 

 Summarize the above, we have 

  1 11 min1 0 12 0 max1 13 max1( ) ( ) ( ) ( ) ( )I I H t t H t t I H t t H t t I H t t        . (55) 

The other integrals in Eq. (42) can be carried out explicitly in a similar manner. If we use 2I  to 

represent the second term in (42), it can be shown that 

  
2 21 min 2 1 22 1 2

23 2 max 2 24 max 2

( ) ( ) ( ) ( )

      ( ) ( ) ( )
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I I H t t H t t I H t t H t t
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, (56) 
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where  
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 Similarly，if we use 3I  to represent the third term in (42), it can be shown that 

  3 31 min3 32 max 3 33 max 3( ) ( ) ( ) ( ) ( )d dI I H t t H t t I H t t H t t I H t t        , (65) 
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 From (55), (56) and (65), the integrand (42) can be written as 

   2 1 2 30,u t I I I    . (72) 

By substituting the definition of 0  back into (72), one can find that 2u  can be written as 

2 ( , , )L Tu t C    , where 
2 ( )L L L T T

L T

c c c
C

c c

  



. Physically, this means the two delay time L  

and T  of the primary waves will give rise to a time delay of value C to the second order shear 

wave 2u . It is easy to show that the Fourier Transform of 2 ( , , )L Tu t C     is 

  2 2( , , ) ( , , )i C
L T L Tu t C e u t            F F . (73) 

This means the time delays ( L  and T ) of the two primary waves only affect the phase of the 

second order difference shear wave 2u . From the expression of each term in (72), one can see 

that 2u  is proportional to T  within the region of interaction. As a result, if we adjust the 

delay time and let the two primary waves mix at different locations, a relative spatial distribution 
of T  can be obtained by measuring 2u  generated at different locations. 

ARRIVAL TIME ANALYSIS 

 In this part, we will begin from another point of view to analyze the physical meaning of 
delay C in (73). We already know that the resonant shear wave 2u  having a difference 

frequency R  will propagate “backward” to the left  and wave speed is shear wave speed Tc  

under the condition (33). Without loss of generality, we assume the two delay times 0L T    

in the analysis below. The distance between the left end (y=0) and the location where the two 

primary waves meet is ( )T
L T

L
d c

c c



 (See Figure 4, L is the sample length). Imagine that the 

shear wave contains many “points”. Each point of the shear wave will interact with the 
longitudinal wave (actually interact with each vibrating point of the longitudinal wave) and the 
interaction generates a difference shear wave with frequency R  and shear wave speed Tc . As 

shown in Figure 4, the lengths of the shear and longitudinal wave are L1 ( 1 T TL c  ) and L2 (

2 L LL c  ) , respectively. Again, without loss of generality, we assume L1 >L2. 
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Figure 4 Start of interaction between point #1 and the longitudinal wave 

 Let’s then consider the second order shear wave generated by the interaction between the 
first point (point #1) of the primary shear wave and the whole longitudinal wave. The time when 
it starts appearing is tc, which should be equal to the time when the interaction begins, i.e., 

  c
L T

L
t

c c



. (74) 

Once this second order shear wave generates, it will propagate along negative y direction and be 
received by the shear transducer at y=0. The arrival time (to y=0) is 

  1_

2
arrive c

T L T

d L
t t

c c c
  


. (75) 

The question now is when this wave will be ending at y=0. If we use 1_ endt  to represent the time 

when this shear wave ends at y=0, we have  

  1_ 1_ 1_end arrive durationt t t  , (76) 

where 1_ durationt  represents the duration of the second order shear wave generated by the 

interaction between point #1 and the whole longitudinal wave. Clearly, it takes 2 ( )L TL c c  for 

the front of the primary shear pulse (point #1) to reach the end of the longitudinal pulse. In other 
words, there is a 2 ( )L TL c c  time delay after tc that the interaction between point #1 and the 

whole primary longitudinal wave ends. The location of point #1 now is at 2 ( )T L Ty d c L c c    

(see Figure 5). Since the phase velocity of second order shear wave is Tc , it means that it takes 

another 2
T T

L T

L
c c

c c

  
    

 for the last generated shear wave (generated at 

2 ( )T L Ty d c L c c   ) to arrive at the same location where the first generated shear wave 

(generated at y=d) arrives. 
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Figure 5 Ending of interaction between point #1 and the longitudinal wave 

 Based on the analysis above, we can conclude that 
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. (77) 

Substitution of (75) and (77) into (76) yields 
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



. (78) 

 Next, we consider the interaction between the last point (point #2) of the primary shear wave 
and the whole longitudinal wave. The difference wave generated by the interaction between 
point #2 and the longitudinal wave starts at 1 ( )L TL c c  after tc, and the location where it 

starts generating is at 1 ( )L L Ty d c L c c   . Similarly, we have 
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  2
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L T

L
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
, (80) 

  2 1
2 _ 2_ 2 _

2( ) L T
end arrive duration

L T T L T

L L c c L
t t t

c c c c c

  
       

.  (81) 

Compare (79) to (75), one can find that 2 _ 1_arrive arrivet t , which means the second order 

shear wave generated last (by point #2) will arrive at the left end (y=0) early than that generated 
first (by point #1) and thus be observed early. Actually, the total second order shear wave is the 
superposition of all the shear waves generated by the interaction between each point of L1 and the 
whole longitudinal wave. The total second order shear wave arrives at y=0 at 2_ arrivet  and ends 

at y=0 at 1_ endt . The mechanism of superposition will be discussed later. 

 In most of metallic materials, we have 2L Tc c   so that the expressions (75), (78), (79) 

and (81) can be simplified as 

  1_

2
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L T

L
t
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
, (82) 
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Figure 6 Mixing with delay time 

 Next, we will take the delay time of the primary waves into consideration. If the longitudinal 
wave has a delay time L  and shear wave has a delay time T , it’s like we put the shear and 

longitudinal transducer at S1 and S2 shown in the Figure 6. The arrival and ending time of the 
resonant shear wave can be obtain by replacing L in (84) and (83) by L L T TL c c   . 

However, the results after substitution represents the time when the shear wave transducer is also 
put at S1. Since the shear wave transducer is still at its original location, the real arrival and 

ending time should be equal to the time of the substitution mentioned above subtracts T T
T

T

c

c

 

. So the new arrival and ending time are 
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L c c L
t
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, (86) 
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

. (87) 

Simplification of (86) and (87) yields 
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It can be seen from (88)-(89) that delay time  L  and T  give a delay 

  
2 ( )L L L T T

L T

c c c
C

c c

  



 (90) 

to the second order shear wave. Definition of C in (90) is the same as the one in (73). 

FORMATION OF SECOND ORDER SHEAR WAVE BY SUPERPOSITION  

 In previous section, we gave the analysis of second order wave generation by the interaction 
between each point of the primary shear wave and the whole longitudinal wave. The total second 
order shear wave is the superposition of all these second order waves. In this section, we will 
take the interaction in metallic materials ( 2L Tc c  ) as an example and investigate how the 

superposition affects the shape of the total signal. 

 Based on (82)-(85), if 1 22L L , we have 2_ 1_end arrivet t . The second order shear wave in 

this case can be represented by Figure 7. The x-coordinate in this figure represents the time-axis. 
Each solid line represents a second order shear wave generated by the interaction between one 
point of the primary shear wave and the whole longitudinal wave. The total resonant shear wave 
can be found by the superposition of all these second order waves. Once the resonant  

 

Figure 7 Superposition of second order shear wave ( 1 22L L ) 

condition (33) is satisfied, it can be proved that all these second order waves are in phase, so the 
superposition gets to a maximum (constant) between 2_ endt  and 1_ arrivet . 

 If 1 22L L , we have 2_ 1_end arrivet t  and the second order shear waves can be represented 

by Figure 8. The summation gets to its maximum at 2 _ 1_end arrivet t t  . Since there is only one 

maximum value for this case, the total shear wave will have a diamond shape. 
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Figure 8 Superposition of second order shear wave ( 1 22L L ) 

 If 1 22L L , we have 2_ 1_end arrivet t  and the second order shear waves can be represented 

by Figure 9. The summation gets to its maximum between 1_ arrivet  and 2_ endt . 

 

Figure 9 Superposition of second order shear wave ( 1 22L L ) 

 Figure 10 (a)-(c) shows the numerical calculation of (72) for the three special cases 
mentioned above. It’s clear that the diamond shape signal only appears when 1 22L L . Actually, 

it can be shown that the maximum amplitude of the mixing wave does not change when we 
decrease the length L1  from 1 22L L  to 1 22L L  while keeping the length of L2 as a constant 

(see Fig.10 (a)-(b)). It is only the width of the maximum region that reduces with the decrease L1. 
This can be explained by the mechanism of superposition shown in Fig. 7-9. In this special case, 
the height of the region between 2 _ endt  and 1_ arrivet in Fig. 7 is equal to that in Fig. 8. If we 

keep decreasing the length of L1 from 1 22L L  to 1 22L L , the maximum amplitude of the 

mixing wave starts decreasing with the decrease of L1 (see Fig. 10(c)). This is because the height 
of the region between 1_ arrivet  and 2 _ endt  in Fig. 9 is shorter than those in Fig. 7 and Fig.8. 
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  (a)                                              (b)                           
(c) 

 Figure 10 Numerical calculation of the total shear wave for (a) 1 22L L , (b) 1 22L L , and  

(c) 1 22L L  

Figure 11 shows an comparison between the theoretical solution (72) and the experimental 
result in an aluminum sample ( 6300m/sLc  , 3140m/sTc  ) for 0L T   , 0.183mL  . The 

primary shear wave is 2.5MHz with 5 cycles, and the corresponding duration time is T =2us. 

The primary longitudinal wave is 9.65MHz with 9 cycles, and the corresponding duration time is 

L =0.93us. The spatial lengths of the shear and the longitudinal waves are 1 0.0063T TL c m   

and 2 0.0059L LL c m  , respectively. It’s clear that 1 22L L . Based on (82)-(85), we can 

calculate the four critical times in Figure 9 : 2 _ 38.1arrivet us , 1_ 38.7arrivet us , 2_ 39.3endt us  

and 1_ 40.0endt us . It is shown in Figure 11 that: (1) the superposition analysis gives the same 

arrival time, ending time and shape as that given by the theoretical solution, (2) the four 
transition points of time (shown by dashed lines) of the mixing wave show good agreement to 
the four critical times calculated by (82)-(85). 
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                       (a)                                          (b) 

Figure 11 Collinear mixing wave in an aluminum sample (a) Theoretical results, (b) 
Experimental results 

 

SUMMARY AND CONCLUTION 

 This paper investigates the nonlinear mixing of a pair of collinear transient longitudinal and 
shears waves. The solution for the second order shear wave with difference frequency is obtained 
under the phase matching condition by using the transient Green’s function. The physical 
meaning of the delay time of the resonant wave is investigated and the mechanism of its 
formation is analyzed by a superposition analysis. 

 We found that the amplitude of the resonant wave is proportional to the acoustic nonlinearity 

T  within the region where the two primary waves mix. It is thus possible to obtain a relative 

spatial distribution of T  through the thickness direction of the sample by adjusting the delay 

times of the two primary waves.  
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III.1.4 Physics-Based Models for ASR Damage Evolution 

 A novel approach, entitled ASR-LDPM [1] was formulated to simulate the effect of ASR on 
concrete structures. ASR-LDPM implements, within the mesoscale framework of LDPM, a 
model describing ASR gel formation and expansion at the level of each individual aggregate 
particle. ASR-LDPM was calibrated and validated with reference to several sets of experimental 
data dealing with ASR effects on concrete under a variety of different loading and environmental 
conditions with the limitation to saturated conditions. 

 The main effect of ASR is a progressive deterioration of concrete stiffness and strength that 
results from the long term formation and expansion of ASR gel inducing expansive pressure on 
the internal structure of concrete. This pressure causes non-uniform deformations that eventually 
lead to cracking and damage. While the chemical description of the reaction was addressed 
intensively in the literature, the fracture mechanics associated with the progressive expansion has 
received little attention due to the lack of models describing concrete internal structure 
satisfactorily. The main objective of the ASR-LDPM model is to fill this knowledge gap. 

 Despite some success, the common disadvantage of the various models previously developed 
is the inability to simulate crack patterns and crack distribution due to ASR. This, in turn, limits 
the ability to predict the degradation effect of ASR and forces the assumption of 
phenomenological relationships between ASR gel expansion and concrete mechanical properties. 
In addition, it also limits the ability of such models to explain complex triaxial behavior of 
concrete under ASR and also forces the assumption of phenomenological relationships between 
ASR gel expansion and stress state. These limitations are inherently connected to modeling 
concrete as an isotropic and homogenous continuum. 

 ASR-LDPM overcomes these problems by modeling ASR effects within the Lattice Discrete 
Particle Model (LDPM) [2, 3]. LDPM, in a full 3D setting, simulates the mechanical interaction 
of coarse aggregate pieces through a system of three-dimensional polyhedral particles, each 
resembling a spherical coarse aggregate piece with its surrounding mortar, connected through 
lattice struts [2] and it has the ability of simulating the effect of material heterogeneity of the 
fracture processes [3]. ASR-LDPM introduced here is limited to fully saturated conditions as the 
consideration of water macro diffusion will be considered in the future work.  

 In the formulated model, the following assumptions were used. 

(1) Water needs to be available in the pores to act as transport medium for hydroxyl and alkali 
ions for ASR to occur. 

(2) The expansion of ASR gel is mostly due to water imbibition. 

(3) Continuous supply of water is needed for the swelling to continue over time. 

(4) The aggregate particles are assumed to have spherical shape. 

(5) The whole volume of each particle is assumed to be reactive. 

(6) Silica is smeared uniformly over each aggregate volume.  

(7) Under these approximations, the dissolution of silica may be assumed to progress roughly in 
a uniform manner in the radial direction inward from the surface towards the particle center.  

(8) Only saturation condition is considered so far. This case has practical relevance in situations 
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in which concrete is continuously exposed to water. The effect of relative humidity change is to 
be considered in the future work. 

(9) Shrinkage and possible creep are compensated using relevant models in literature (B3 and 
CEB models) but not implicitly coupled with the formulation. 

 Based on the aforementioned assumptions, two main processes have been formulated and 
connected; (1) Basic gel formation, and (2) Water imbibition, then volume increase due to water 
imbibition is translated into inhomogeneous gel strain, and is imposed on the concrete meso-
structure using the LDPM model. The highlights of each part are as follows. 

(1) Basic Gel Formation. 

The gel mass Mg generated from an aggregate particle with diameter D, is derived from solving 
the steady state mass balance of the radial diffusion process of alkali rich water into the 
aggregate particle. The solution is given by, 

 

Where mg = 94.1 g/mole, ms = 60.09 g/mole are the gel and silica molar weights respectively, ζ = 
2z/D is the non-dimensional reaction front position where z is the reaction front position 
measured from aggregate particle external surface, cs is the silica content assumed here for lack 
of experimental data to be 440 kg/m3, and κa accounts for the fact that alkali content available in 
the cement paste surrounding each aggregate particle, is not always enough for the ASR reaction 
to occur. In other words, the discussed availability of water at reaction front is not a sufficient 
condition for ASR and such water needs to be alkali rich. In this study, in absence of more 
detailed information, a simple linear relationship between alkali content, ca, and the produced gel 
mass is assumed: κa = min(�ca − c0a� /(c1a − c0a), 1), where c0a is the threshold alkali content at 
which, no or minimal expansion is observed, and c1a is the saturation alkali content enough for 
complete silica reaction. 

(2) Water imbibition 

The water imbibition process was described by relating the rate of water mass Mi imbibed by gel 
to the thermodynamic affinity and a characteristic imbibition time. This leads to the following 
expression, 

 

Where R is the universal gas constant, T is the absolute temperature in Kelvins, T0 is a reference 
absolute temperature where the imbibed water at thermodynamic equilibrium has been assumed 
to be proportional to the mass of formed gel and temperature-dependent through an Arrhenius-
type equation governed by the activation energy of the imbibition process Eai. δ is the average (or 
effective) distance of water transport process from the concrete around the aggregate into the 
ASR gel. The micro-diffusivity Ci for microdiffusion of water close to the aggregate was 
considered to be a decreasing function of Mi, because the imbibition of the layers of gel increases 
the diffusion time of the free water to reach the not imbibed gel. This phenomenon can be 
captured by setting Ci = Ci0exp(−ηMi), and η(Mi) is an increasing function of Mi.  
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 Analysis of experimental data carried out in this study suggests that, in absence of more 
precise information about the water imbibition process, 

Where                for T0 = 23◦C = 296◦K. 

(3) Lattice Discrete Particle Modeling of ASR effect 

 To account for ASR in LDPM, first the radius variation of each aggregate particle of initial 
radius r = D/2 can be calculated from the volume variation of the ASR gel due to water 
imbibition: 

 

This result can be then used to calculate an incompatible ASR strain     to be applied to the 
LDPM system assuming that strain additivity holds: where the total strain is given by            
where           ; ∆r1 and ∆r2 are the radius changes of the two aggregate 
particles sharing a generic facet; l is the distance between these two aggregate particles; and     
is the normal strain that is calculated according to the LDPM constitutive equation. 

 

 After calibrating the model it was able to capture (1) the general characteristics of ASR S-
shaped expansion versus time curves; (2) the effect of stress states on observed expansion; (3) 
the effect of expansion on concrete strength; (4) the effect of alkali content; and (5) the effect of 
temperature. 

 The relevant results for small specimens carried out here were used to calibrate the model 
which was able to accurately capture the expansion curves with very high accuracy as shown in 
figure a). 

 

 

In addition, the model was capable of reproducing the corresponding crack patterns found in the 
experiments as shown in figure b). 
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 The simulation of large specimens requires the consideration of alkali ion macrodiffusion and 
thus, it was scheduled to be done within the next quarter work. It is to be mentioned also that the 
model can reproduce the current damage state of the specimens and as it is now calibrated on the 
given expansion history, it can predict the remaining expansion history and hence, the expected 
strength reduction. 
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III.1.5 Nonlinear wave mixing technique to measure the ANLP in concrete samples 
nondestructively in a laboratory environment 

One-Sided Collinear Wave Mixing 

 In many cases of practical interest, NDE can only be performed on one-side of the sample.  

To meet this need, we develop a one-sided collinear wave mixing technique.  The basic idea of 

the technique is to send a shear wave pulse into the sample first, then send a longitudinal wave 

pulse from the same location and in the same direction later.  Since the longitudinal pulse 

propagates faster, it will catch, overlap and eventually pass the shear pulse. During the overlap 

period, the two waves interact and may generate a resonant shear wave the frequencies of the 

two primary waves satisfy the resonant condition.  The resonant shear wave propagates back 

towards the shear wave transducer, and the corresponding signals can then be recorded would 

contain the ANLP of the material at the region where the two primary wave mix.  By adjusting 

the time delay between the longitudinal and shear pulses, one can control the location where the 

two wave mix.  Thus, it is possible to scan the sample in the depth direction from only one side. 

Theory 

 When the quadratic terms of displacement are considered in the stress-strain relationship, the 

nonlinear equations of motion for an isotropic solid in one dimension are 

  
2 2 2 2

2 2 2
2 2 2 2L L L T T

u u u u v v
C C C

t x x x x x
      

  
     

  (1) 

  
2 2 2 2

2 2
2 2 2 2T T T

v v u v v u
C C

t x x x x x


      
         

  (2) 

where 

  TC   ,  2LC    
2

3 2
2L

l m
 


 


, 
2

T

m 
 


   

and   is the density of the solid.   is the compression modulus and   is the shear modulus. 

l  and m  are third-order elastic constants.  

 If we set 0 su u u   and 0 sv v v   where 0u  and 0v  are the solutions when the right 

side of (1) and (2) is 0, su  and sv  can be treated as the correction arising from the right side. 
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Since we are interested in the mixing of a longitudinal wave and a shear wave propagating in the 

same direction (positive x-direction), the expressions of the primary monochromatic waves are 

taken as 

   0 cos L L Lu U t k x         (3) 

   0 cos T T Tv V t k x         (4) 

where the wavenumbers are L
L

L

k
c


 , T

T
T

k
c


 .  

 If su  and sv  are small enough compared to 0u  and 0v , we can substitute 0 su u u  , 

0 sv v v   into the left side of (1) and (2), and 0u u , 0v v  on the right side as an 

approximation. The substitution yields 

  
2 2 0 2 0 0 2 0

2 2 2
2 2 2 2

s s

L L L T T

u u u u v v
C C C

t x x x x x
      

  
     

  (5) 

  
2 2 0 2 0 0 2 0

2 2
2 2 2 2

s s

T T T

v v u v v u
C C

t x x x x x


      
         

  (6) 

Since we are only interested in the terms representing interactions between the primary waves, 

terms represent self-interactions will be neglected. Thus, the mixing wave exists only in the form 

of a shear wave and the superscript “s” is omitted from this point on for brevity.  Equation (6) is 

then written as 

   
2 2

2
2 2

,T

v v
C f x t

t x

 
 

 
     (7) 

where  

  
        

      
, sin
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L T L T L T

L T L T L T

f x t A t k k x
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



     
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,  

   
2

2
T T L T

L T

UV C k k
A k k
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2

2
T T L T

L T

UV C k k
A k k

   . 

The interaction term  ,f x t , which is proportional to the product of the primary beams 
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amplitudes, should be zero outside the region where the two wave mix.  

 The equation for the Fourier transform from (7) is 

       
2

2 2
2

,
, ,T

v x
v x C f x

x


  


  


  (8) 

where  ,v x   and  ,s x   are the Fourier transform from  ,v x t  and  ,f x t .   If we 

assume that the resonant wave propagates from the point 0x x , the boundary condition can be 

given as  0 , 0v x   . The solution for (8) is written as  

      
0 0

, cos , sin sin , cos
x x

T

x x
T T T T

C
v x x f a ada x f a ada

C C C C

     


    
     

    
   (9) 

Then from inverse Fourier transform,  ,v x t  can be obtained as 
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  (10) 

The first and second terms in (10) are shear wave with the difference frequency, while the third 

and fourth terms are shear wave with the sum frequency. The terms of the cosine function in (10) 

have the similar form with the solution given by Gerald Lee Jones, so the resonance condition 

for an isotropic solid in one dimension can be given as 
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     (11) 

When the primary waves propagate in the same direction, if the first and second resonance 

conditions are satisfied, we can have 

 
   

2 2 2
2

2 2 2
2L T L T L T

L T
T L T L T

k k
C C C C C

     
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The resonance conditions can be simplified to a relationship between the frequency ratio and the 

velocity ratio.  

  
1

2

c 
        (13) 

where 0T

L




  , T

L

C
c

C
 .  In other words, a resonant wave with the difference frequency 

can be generated when the primary waves propagate in the same direction if (13) is met.  The 

expression of the resonant wave can be expressed as 

    
     

3
0, cos

8
T T L T L T

L T L T
L T T

UV C k k k k x x x
v x t t
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   

  
    

           
  (14) 

As a result, the amplitude of the scattered wave is proportional to the length of the intersection 

region of the two primary waves. 

Waveform of the Resonant Wave under the Resonance Conditions 

 When transient pulses are used as excitations in the nonlinearity measurement experiments, 

the amplitude of the resonant wave received by the transducer at a given time rt  can be treated 

as part of the continuous solution which is infinite in the time domain. Without loss of generality, 

a special case, in which a longitudinal wave and a shear wave are mixed in the same direction, is 
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considered. 

 Assume that a shear wave transducer located at 0x  generates a shear pulse of SN  cycles 

at 
0St , and a longitudinal wave transducer located at 0x  generates a longitudinal pulse of LN  

cycles 
0Lt . Both of the transient pulses propagate in the positive x-direction, and they are under 

the resonance conditions with the frequency Sf  and Lf . The velocity of the shear wave and 

longitudinal wave are  SC  and LC , respectively. 

 The resonant wave can be generated between the time when the two pulses meet and the time 

when the two pulses separate completely. When one of the transient pulses reaches the point 0x  

and another is passing through it, the resonant wave starts its propagation at the point 0x  

towards the negative x-direction. Before the resonant wave meets one of the pulse ends at the 

point x , the propagation of the resonant wave can be described by the continuous solution 

 ,v x t  in the infinite time domain because all the region it passed through is the interaction 

region. After that, the resonant wave propagates without amplitude change.  

 Without loss of generality, the case that the resonant wave generated at the point 0x  reaches 

the transducer with the amplitude A  is considered. If the front of the longitudinal wave passes 

the end of the shear wave and reaches the point 0x , the resonant wave starts its propagation at 

the time t . The time at which the resonant wave reaches the transducer is 0
r

S

x
t t

C
  . It is easy 

to obtain the duration that the resonant wave propagates in the interaction region 

  
  

min ,
2

L S meetL L
mix

L S S

C C t tN
t

C C C

   
   

  (15) 

The length of the interaction region is mix S mixd C t  . Thus, the amplitude of the scattered wave 

should be  

  
 

3

8
T T L T L T

mix
L T

UV C k k k k
A d


  





     (16) 

 Similarly, if the front of the longitudinal wave passes the front of the shear wave and the 
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front of the shear wave reaches the point 0x , the resonant wave starts its propagation at the time 

t. We can obtain the duration that the resonant wave propagates in the interaction region 

  

 
min ,

2

S S
L L L S meet

L SS S
mix

S L S

N
N C C t t

C CN
t

C C C




  
         

  
 

  (17) 

The amplitude of the resonant wave can also be expressed by (16). 

 Eliminate 0x  and t , we can finally obtain the expression of the amplitude as a function of 

rt , which can be used to predict the waveform displayed on the oscilloscope. As a result, when 

the delay between the two transient pulses are adjusted, the primary waves can mix at different 

locations so that a distribution of T  is then obtained. Especially, if S LN N  under the 

resonance conditions, the shape of the scattered waveform will be a standard diamond.  
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III.1.6 Physics-Based Models that Correlate the ANLP to ASR Damage 

Change of Acoustic Nonlinearity due to ASR Damage 

The original acoustic nonlinearity parameter   only relates to material properties, and is 

usually defined as [1]: 

   
4 2

(3 )
2

m l
 


  


 (1.1) 

in which λ and μ are the Lamé constants, and l and m are the third order elastic constants (the 

Murnaghan coefficients). However, when material is under residual stresses, or experiences 

plastic deformations, the nonlinearity parameter   changes correspondingly as has been shown 

in extensive experimental results [2-8]. Our previous work has demonstrated the feasibility of 

using nonlinear ultrasonic techniques to track the progress of ASR damage in cement-based 

materials [9]. Here we want to predict the   change using our previous model validated by 

expansion measurements of small mortar samples. An example of acoustic nonlinearity 

parameter   change in metallic materials due to dislocation and microcracks can be found in 

ref. [10]. Basically   change is a linear superposition of two terms, one is proportional to the 

initial stress and the other is proportional to the crack density. In our problem here, since the gel 

layer is also nonlinear, at least three factors can contribute to   change during ASR damage 

process: the nonlinearity from gel layer gel  as a function of gel thickness gel , the nonlinearity 

due to internal stress stress  as a function of interface pressure intP , and the nonlinearity caused 

by microcracks crk  as a function of crack density 0
crkN . Suppose the   change from these 

three factors is not substantial, as the first order approximation,   can be expressed as the 

linear superposition from these three terms as, 

 0 int 0( ) ( ) ( )crk
gel gel stress crkP N          (1.2) 

where 0  is the original material nonlinearity before cracking. The expressions of gel , stress  

and crk  will be given next. 

Nonlinearity β from the gel layer 

 Consider gel layer as a distinct layer, due to its aqueous behavior, there is no shear stress 
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generated inside this layer. However, since the gel layer is nonlinear, it can cause nonlinearity to 

the whole three phase unit, whose structure is shown in Fig. 6.12. Suppose this three phase unit 

is subjected to a tensile stress 0  at the outer boundary as shown in Fig. 6.12, by calculating the 

tensile strain generated by the tensile stress at the outer boundary, one can get the expression of 

gel .  

Ra

Aggregate

Cement paste

R
c

Gel layer

σ0

σ
0σ 0

σ0

σ 0σ
0

 

Fig. 6.12 Three-layer unit subjected to tensile loading at outer boundary 

 

1). Following the similar procedure described in Section 6.4.1, one can firstly get the 

displacement and stress expression within each layer from the equilibrium equation , 0ij j   as, 

In aggregate, 

                      3a a
r a r a au A r K A    (1.3) 

In cement paste, 

 2 3/         3 4 /c c
r c c r c c c cu A r B r K A B G r      (1.4) 

In gel, 
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 2
1 2( )                     g g

r r g gu f r P a e a e     (1.5) 

in which aK  is the bulk modulus in aggregate, while cK , cG  are the bulk, shear modulus in 

cement paste respectively. P is the pressure in gel layer and ge  is the strain in gel layer. Since 

the gel layer is nonlinear, the stress and strain has nonlinear term in gel layer. The constant 2a  

corresponds to the third order elastic constant of gel layer. The displacement in gel layer g
ru  is a 

function of radius r, thus the strain in gel layer is 

 ' 2
( ) ( )g rre e e e f r f r

r      , (1.6) 

and the stress in gel layer should be 

 2 ' ' 2
1 2 1 2

2 2
( ) ( )g g g

rr g ga e a e a f f a f f
r r           . (1.7) 

From the equilibrium equation one can get, 

 
2

0rrrr

r r
     

 


 (1.8) 

Plugging Eq. (1.7) into Eq. (1.8), one can further get 

 

'' ' ' '' '
2

'
' ''2

2 2

2
( 2( ) ) 2( ) ( 2( ) ) 0

4
( 2 )( 2 2 ) 0

f f
a f a f f f

r r r

a f f
a a f f f

r r r

      

     
 (1.9) 

The solution of Eq. (1.9) yields 2/g
r g gu A r B r   . Then the strain in gel layer is 

2 3
g g
r r

g g

u u
e A

r r


  


. Plugging the strain in gel layer into Eq. (1.5), one can further get the 

pressure in gel layer, 

 22
1

1

3 ( 3 )g g

a
P a A A

a
   (1.10) 

2). The boundary conditions are listed as follows: 

The stresses continuity at the boundary of aggregate ar R  and at the boundary of gel cr R , 
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 ( ) ( )a c
r a r cR R P    (1.11) 

The stress at the outer boundary REVR  equals to the loading stress, 

 0 ( )c
r REVR   (1.12) 

The displacements at aR  and cR  are equal, 

 ( ) ( )      ( ) ( )a g g c
r a r a r c r cu R u R u R u R   (1.13) 

Plugging Eqs. (1.3)-(1.5) and (1.10) into Eqs. (1.11)-(1.13), one can get a group of equations 

 

3 2

3
0

2

2 2

3 3 4 / 3 9

3 4 /

/

/ /

a a c c c c c g g

c c c c REV

a a g a g a

g c g c c c c c

K A K A B G R aA abA

K A B G R

A R A R B R

A R B R A R B R



    


 


   
     

 (1.14) 

From Eq. (1.14), one can eliminate , , ,g g c cA B A B  in function of aA  as 

 
3 3

0
3 3 3 3

1

( ) 3 ( )
a c REV

c a
c REV c c REV c

K R R
A A

R R K R R K


  

   
, (1.15) 

 
3 3 3 3

0
3 3 3 3

3 1

4 ( ) 4 ( )
a c REV c REV

c a
c c REV c c REV

K R R R R
B A

G R R G R R


  

   
, (1.16) 

3 3 6 3 3 3 3

6 3 3 3 3 3 3

3 3 3 3
0 0

6 3 3 3 3 3 3

12 12 9 121

12 ( )

3 41

12 ( )

c a c c c c a c c REV a c c a REV
g a

c c c c REV c a a REV

c c REV c c REV

c c c c REV c a a REV

R R K G R G K R K R K K G R R
A A

K G R R R R R R R

R K R R G R

K G R R R R R R R

 

   


  

 


  

, (1.17) 

 

3 3 3 3 3 3

6 3 3 3 3 3 3

3 3 3 3
0 0

6 3 3 3 3 3 3

(12 12 9 121

12 ( )

(3 4 )1

12 ( )

c a c c c c c a c REV a c c REV
g a

c c c c REV c a a REV

c a c REV c REV

c c c c REV c a a REV

R R R K G R G K K R K K G R
B A

K G R R R R R R R

R R K R G R

K G R R R R R R R

 

  
 

  




  

 (1.18) 

Note that aA  is dimensionless. We can further simplify this problem by two assumptions, 

a) a cR R d   with d  to be the thickness of gel layer. One can further get a c c gelR R R     



NEUP CFP-12-3736 Final Report   11/30/2015 

 

54 
 

with the gel thickness ratio / 1gel cd R   . 

b) 2
1( )g gP a e be   with 2 1a a b  the third order elastic constant. b  is the ratio of third order 

over the second order elastic constant of gel. 

Note that gel  and b  are both dimensionless. 

3). The solution of aA : 

Based on the simplifications, one can obtain a quadratic equation regarding to aA  from Eq. 

(1.14), 

 2 2
1 2 3 0 4 0 5 0( ) ( ) 0a aW A W W A W W        (1.19) 

In which 1W  to 5W  are all the combination of modulus and radius in aggregate, cement paste 

and gel. Eq. (1.19) has the solution 

 

2 2
2 3 0 2 3 0 1 4 0 5 0

1

2 2 23 02
3 1 5 0 2 3 1 4 0 2

1 1 1

( ) 4 ( )

2

1
( 4 ) (2 4 )

2 2 2

a

W W W W W W W
A

W

WW
W WW W W WW W

W W W

   

  

     


       

. (1.20) 

This solution can be simplified by assuming 2
1 2Y W , 2 2 3 1 42 4Y W W WW   and 

2
3 3 1 54Y W WW  . Since the applied load 0  is due to ultrasonic wave vibration, it is very small. 

One can then expand the square root of 0  and get 

 

2
3 0 2 0 1

2 3
2 33 2 32 2 2

1 0 1 0 1 02 2 3
1 1 1 11

1 1 1 1 1
( ) ( )

2 2 8 4 16

Y Y Y

Y Y YY Y Y
Y Y Y

Y Y Y YY

 

  

 

      
 (1.21) 

Substitute Eq. (1.21) into Eq.(1.20), 

 

3 02

1 1

2 3
2 32 3 1 4 3 2 32 2

2 0 1 0 1 02 2 3
1 2 1 1 1 1

2 2

2 41 1 1 1 1 1
[ ( ) ( ) )]

2 2 2 8 4 16

a

WW
A

W W

W W WW Y Y YY Y
W Y Y

W W Y Y Y Y



  

  


      

 (1.22) 
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To make the solution simpler, choose ‘+’ in Eq. (1.22) and one can get 

 
2 3

2 33 2 34 2 2
0 1 0 1 02 2 3

2 1 1 1 1 1

1 1 1 1 1
[ ( ) ( ) )]

2 2 8 4 16a

Y Y YW Y Y
A Y Y

W W Y Y Y Y
  

       (1.23) 

4). Calculate  : 

From Eq.(1.4), one can get the strain on the outer boundary as 

 
3

3 3
3 0 0

3 3

( ) 2

31
                      [( ) ]

2 3 2

c
cr

REV c
REV

a a REV c
c a

REV c c c c c

Bu
R A

r R

K K R R
R A

R R G K K G



 


  


   


 (1.24) 

Substitute Eq. (1.23) into Eq. (1.24), one can get 

 

3 3
34

03 3
2

2 3
1 13 2 3 33 2 32 2

0 02 2 3
1 1 1 1 1 1

31
( ) {[ ( ) ]

2 3 2

3 31 1 1 1
( )( ) ( )( ) )}

2 2 8 2 2 4 16 2

a a REV c
REV c

REV c c c c c

a a a a
c c

c c c c

K K R RW
R R

R R W G K K G

Y YY K K Y Y K KY Y
R R

W Y Y G K W Y Y G K

 

 


   



      

 (1.25) 

 According to Cantrell’s derivation[11], 

 

2
2

1 1 12

2
1 3 2

1 1 12

2
1 1 1

1
( ) ( ) ( ) ( ) ...

2

1
   ( ) ( ) [( ) ( ) ]( ) ...

2
1

   ( ) ( ) ...
2

X X

X X X

P Q

      
 
      
  

    

 

 
     

 
  

     
  

     

 (1.26) 

with 1  the initial stress that gives rise to an initial strain 1 . The nonlinearity parameter can 

be obtained from Eq. (1.26) as 
Q

P
   . Compared to Eq. (1.26), one can obtain   from Eq. 

(1.25) as 

 

3 3 2 3
3 2 32 2 2 2

03 2 2 3
1 1 1 1 1 1

3 3
24

2

2 31 1 1 1
[ ( ) ( ) )]

(3 2 ) 2 8 4 16

2 / 3
[ ]

3 (3 2 )

REV c c c
gel

c a c c

c REV c c

a c c

R R G K Y Y YW Y W Y

R K K G W Y Y W Y Y

G R R KW

W K K G

 




    




 



 (1.27) 
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Sine the ratio of gel thickness over the radius of aggregates gel  is very small, one can further 

expand   with gel  at 0gel   and keep the first order of gel . One can finally get, 

 1 2 0| |gel S S      (1.28) 

with 
2 3

1
1 2 2

1 1 1 1 1

36 ( 3 2 ) (4 3 )

[4 3 4 (1 )](3 6 4 6 )
g c c c c a

a c a c c c a c c a

b K G V G K K
S

a K G V K K K G V K K V G K V

   


     
 (1.29) 

and 
2 3 4

1
2 3 2 2

1 1 1 1 1

216 ( 3 2 ) (4 3 )

[4 3 4 (1 )] (3 6 4 6 )
g c c c c a

a c a c c c a c c a

b K G V G K K
S

a K G V K K K G V K K V G K V

   


     
 (1.30) 

in which 
3

1 3
c

REV

R
V

R
  is the volume ratio of aggregate. From Eq. (1.29) and (1.30) one can tell 

that the only parameter that varies with exposure time is the gel thickness ratio, g , and other 

parameters are all constants. Unfortunately due to lack of the information in gel modulus, one 

cannot decide 1a  and b in these equations. If we choose 1a  equals to water’s modulus 2.25 

GPa, and nonlinearity ratio in gel layer b=5, one can get an estimated nonlinearity 

2 6
02.67 10 4.2 10 | |gel gel gel       . So if the gel thickness ratio is 10%, the absolute 

nonlinearity change is around 26.7 considering 0  is very small and 2S  is negligible. 
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III.1.7 Physics-Based Models for ASR Damage Evolution 

 The LDPM model was improved by adding the alkali ion diffusion to it. In this regard, two 

important modifications were formulated as follows, 

Solution of diffusion problem 

 Here, two assumptions were made: 1) The diffusion process can be assumed as a 2D 

diffusion as sample cross section dimensions are much smaller than its length, 2) Constant 

diffusion coefficient is used as the self dissication of concrete effect on internal relative humidity 

was neglected, this is because specimens already have high water to cement ratio (0.5) and they 

are immersed in water for the whole curing and test period. Based on that, an implicit integration 

method (The alternating Directions implicit) with Crank Nicolson scheme was implemented to 

solve the 2D diffusion problem. This method discretizes the solution as follows 

 

where Ut, Uxx and Uyy are the first time derivative, second spatial derivative in x and second 

spatial derivative in y, respectively. D+ is the forward Euler operator and D0 is the central 

difference operator, C is the constant diffusivity parameter. 

 In addition, the ASR-LDPM model deals with the concentration of ions as an overall alkali 

content in kg/m3 of concrete, while the diffusion process is in terms of moles/Littre. So, after 

solving for the concentration, it is converted into alkali content. The final alkali content 

distributions for small and large samples of 1”X1” and 4”X4” after 14 days have the following 

profiles 
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Small Sample 

 

 

Large Sample 

Consideration of variable alkali content on ASR-LDPM formulation 

 The ASR-LDPM model was formulated for fully saturated conditions with uniform alkali 

content over the concrete volume. This is the condition of mostly all real structures in which, the 

source of alkali is the initial alkali content of the concrete mix and water just helps transferring it 

into the aggregates, so the alkali ions only undergo micro diffusion. This is also the same case 

for long term concrete prisms and cylinders experiments, as the alkali content is increased by 

adding alkali to the mixing water, then after curing, the specimens are either sealed or kept in 
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various humidity conditions. For the special case of accelerated mortar bar test, the source of 

alkali becomes the water in which the bar is immersed after curing. In this case, alkali undergoes 

both macro and micro diffusion to reach the aggregate. For this case, the reaction front evolution 

with time is delayed due to the alkali macro diffusion process. In ASR-LDPM, the alkali content 

effect is introduced through κa as a reduction factor of the formulated gel mass. To extend its 

effect to the reaction front evolution, the cubic root of κa is moved to the reaction front rate. The 

initial ASR-LDPM gel mass equation is modified as, 

 

Where the reaction front speed can be approximately given by,  

 

For a wide range of different constant alkali contents both old and new formulations give very  

close results as shown below. 
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III.1.8 Nonlinear Wave Mixing Technique to Measure the ANLP in Concrete Samples 
Nondestructively in a Laboratory Environment 

Nonlinear Mixing Wave Theory 

 One-dimensional longitudinal wave motion in a nonlinear solid is governed by the equation 
below 

  
22 2

2 2 2

1

2

u u u

c t x x x

               
  ,    (1.31) 

where c is the longitudinal wave velocity, u is the displacement, and  β is the acoustic 
nonlinearity parameter. Since the nonlinearity parameter β is related to material damage, it 
should change with the ASR damage in cement-based materials. To measure the β change, we 
use the co-linear mixing wave method.  

 Suppose an ultrasonic wave consists of two frequencies 1  and 2  as, 

 1 1 2cos cos
x x

u U t V t
c c

                      
  , (1.32) 

where U and V are, respectively, the displacement amplitude of these two frequency components. 
As the wave propagates through the test sample, ASR damage in the sample causes these two 
frequency components to interact, resulting in a mixed wave field whose amplitude is 
proportional to β,  
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                        
                     

 (1.33) 

In this work, we will focus on the first term in the high-hand side of (3), i.e., 

  1 2
2 1 22

cos
4d

UV x
u x t

c c

           
  . (1.34) 

By measuring the amplitude 2du , one can obtain the acoustic nonlinearity parameter 

  2du

UV
  .     (1.35) 

This way of measuring the acoustic nonlinear parameter β is called the nonlinear wave mixing 
(NWM) method. 

Experimental Methods 

Sample preparation: 

 Mortar bar samples were prepared using the procedure described by AASHTO T 303 [1]. 
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The fine aggregates used are the Placitas 67 Blend from Lafarge Company. The cement used is 
the type I cement (potential Bogue composition 46.11% C3S, 22.93% C2S, 8.52% C3A and 
9.59% C4AF and 0.83% Na2Oeq).  

 Three thicker 285×100×100mm (111/4×4×4in), and six thinner 285×25×25mm (111/4×1×1in) 
mortar bars were casted.  These samples are named, respectively, L1, L2 and L3 for the thicker 
ones, and S1 – S6 for the thinner ones. To cure the samples, molds with the concrete mix in them 
were placed in a chamber with 100% relative humidity at 23 ºC (73.4 ºF) for 24 hours. After 
demolding, the samples were immersed in tap water and placed in an oven at 80 ºC (176 ºF) for 
another 24 hours. The first set of expansion and nonlinear ultrasonic measurement were then 
taken on these as cured samples to obtain the initial values. These values were used as the 
baseline to normalize the subsequent measurements. To induce ASR damage, the thinner 
samples S1, S2 and S3 and the thicker samples L1 and L3 were immersed in a 1N NaOH 
solution at 80ºC (176 ºF), per the procedures described in AASTHO T 303 [1]. These samples 
were taken out of the solution at regular intervals for expansion and nonlinear ultrasonic 
measurements. The rest of the samples were left in an ambient room environment with 50%RH 
and 230C. 

Measurements 

 A schematic of the collinear beam-mixing measurement setup is shown in Fig. 1.1. Two 
incident waves of different frequencies are generated simultaneously by the function generator.  
One has a frequency of 1  (0.75MHz) with 18 cycles and the other has frequency of 2  

(1.25MHz) with 30 cycles, so both waves have the same duration. After amplification, these 
signals are sent into a high oass filter with a cut off frequency of 0.7 MHz to remove low (< 0.7 
MHz) frequency components in the incident waves, which might be generated by the amplifier.. 
An example of the frequency spectrum of the electrical signal sent to the transmitter is given in 
Fig. 2. Clearly, the signal has negligible frequency component below 0.6MHz.  

 

 

Fig. 1.1 Experimental setup 

 The filtered signals are then sent to the broadband PZT transducer with the central frequency 
of 1MHz attached to one side of the sample. The two incident waves propagate through the 
material and a new longitudinal wave at their difference frequency ( 1 2   = 0.5 MHz) is 
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generated along the wave propagation distance. Since the two incident waves propagate in a 
‘phase matching’ fashion, the newly generated wave is a resonance wave, i.e., its amplitude 
increases with propagation distance. This resonance wave is received by another longitudinal 
wave receiver attached to the other end of the bar.  The receiver has a center frequency of 
0.5MHz and is recorded by a Tektronix TDS 5034B oscilloscope. After that, the digitized time-
domain signal is sent to a PC for post signal processing. During the ultrasonic measurement, a 
high-vacuum grease was used as a couplant between the transducer and the sample. A force 
sensor is used to ensure that the transducers were clamped to the sample with the same pressure 
for all tests. After each measurement, the sample was cleaned with soap and tap water to remove 
any residual couplant. Ultrasonic measurements are taken on three different locations in the 
thicker samples L1, L2 and L3 as shown in Fig. 1.3. 

 

Fig. 1.2. FFT of filtered signal 
 

Fig. 1.3. Locations of ultrasonic measurement 
on L1-L3 

 The PZT transducer converts the electrical signal into a propagating ultrasonic wave field in 
the mortar bar. This wave field consists of two frequency components as indicated in Eq. (2) 
and shown in Fig. 1.2. As the waves propagate, they interacts with the ASR damage in the 
sample. This interaction generates the mixed wave fields that consists of several different 
frequency components. One of these frequency components is 1 2( )  at 0.5MHz. The 

amplitude of this frequency component 2du  can be obtained by performing a Fourier 

transform of the received signal. Once 2du  is measured, the ultrasonic nonlinear parameter β 

can be calculated from Eq.(5), since U and V are known input.  

 

Fig. 1.4a. FFT of received signal on day 0 Fig. 1.4b. FFT of received signal on day 10 
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immersion. As an example, the frequency spectra of the received signals for day 0 and day 10 in 
L1 sample are shown in Figs. 1.4a and 1.4b, respectively. It is seen that (i) the amplitude ratio of 
resonance wave at 0.5MHz over one of the principal beam at 0.75MHz increases over time, a 
sign of increased acoustic nonlinearity parameter β; and (ii) the amplitude corresponding to 
0.75MHz decreases over time, a sign of increased attenuation. Such increase in attenuation is 
frequency dependent, and can be accounted for by measuring the decay in the fundamental 
waves over time. 

Results and Discussion 

Expansion Measurement and Results 

 The immersed samples were taken out each day for the expansion measurements per the 
procedures described in AASHTO T 303 [1]. Results of the expansion per unit length for all 
samples are plotted in Figs. 1.5a and 1.5b as functions of the number of days under the exposure 
of alkali solution. 

 It is seen that samples immersed in the alkali solution all expanded. According to 
ASTM1260, if the expansion of thinner samples is more than 0.2% after 14 days immersed in 
alkali solution, it is considered potentially deleterious expansion [2]. Based on this criterion, our 
expansion measurement data show that the aggregate used in our test, the Placitas 67 Blend from 
the Lafarge Co. in New Mexico, is considered fairly alkali–silica reactive. It is also seen that the 
samples kept in the room environment did not expand at all. If any, there seems to be some 
shrinkage, possibly due to the experimental errors.  

 Comparison between Figs. 1.5a and 1.5b shows that the thinner samples have much large 
expansion than the thicker samples under the same exposure time. A plausible explanation of this 
difference is that the ASR damage across the bar’s thickness is nonuniform. The damage is more 
severe near the sample surface and gradually decreases toward the center of the samples. Such 
non-uniformity is controlled by the rate of diffusion of water into the concrete. The diffusion 
rate-controlled process means that the center region of the thicker samples may not have been 
damaged yet during 14 days of exposure. In other words, after 14 days of exposure, the thicker 
samples may still contain a core of un-damaged concrete, which limits the axial expansion of the 
bar. 

 

 

Fig. 1.5a. Expansion of thinner samples 

 

Fig. 1.5b. Expansion of thicker samples 
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Ultrasonic Measurement Results 

 After each expansion measurement, ultrasonic tests were also conducted on each sample 
using the NWM method. As indicated in Fig. 3, the ultrasonic tests were conducted at three 
locations on each sample. It follows from Eq.(5) that the normalized acoustic nonlinearity is 
given by 

  2

0 2 0

d

d

u

u




    ,    (1.36) 

where the quantities with subscript 0 are those measured before the samples were immersed in 
the alkaline solution (day 0). After accounting for the attenuation, the measured acoustic 
nonlinearity parameter   normalized by the day 0 value as defined in Eq.(6) is plotted in Fig. 
1.6a for all three thicker samples. We note again that these values are the averages of 
measurements from all three locations on each sample. To show the scattering of the data, 
Fig.1.7 is plotted with error bars. Since ultrasonic measurements were conducted by taking the 
transducers off at one location, and putting them back on at at a different location, these error 
bars can also be considered the upper limit of the uncertainties associated with the 
measurements. 

 It is seen clearly from these plots that (1) the NWM method yields consistent and repeatable 
results, (2) the acoustic nonlinearity parameter increases with exposure time, and (3) the acoustic 
nonlinearity parameter is much more sensitive to ASR damage than the volumetric expansion. 

 

Fig. 1.6a.   averaged over 3 locations in 
thicker samples 

 

Fig. 1.6b.   in thinner sample S1 

               

Fig. 1.7. Error bars showing the variation of   for samples L1 and L2, L2 and L3. 
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 We note that results from both the ultrasonic and the expansion measurements seem to 
indicate that sample L1 has more ASR damage than sample L3, although both samples were 
made of the same materials, and were subjected to the same exposure condition.  However, 
since these two samples were from two different batches of concrete mix, we speculate that the 
amount of aggregate in these two samples may not be exactly the same. 

 Recall that the expansion results show that the thinner samples have much larger expansion 
than the thicker ones. The reason for such difference was explained on the basis of non-uniform 
ASR damage across the thickness of the sample. It was argued that ASR damage is controlled by 
the moisture diffusion so that even after 14 days of exposure, the moisture still has not 
progressed all the way through the thickness of the thicker samples yet, i.e., there is still a core of 
undamaged concrete in the thicker samples. This argument is further corroborated by the 
ultrasonic measurement results. Shown in Fig. 1.6b is the measured acoustic nonlinearity 
parameter β of the thinner sample S1. Comparison of Figs. 1.6a and 1.6b shows that, although 
the expansion is very different between the thinner and thicker samples, the measured acoustic 
nonlinear parameter β is almost the same. The reason for this is clear if we assume that in the 
thicker sample, there is a core of concrete that has not been reached by the moisture, therefore, 
has no ASR damage, and the thickness of the ASR damaged outer shell is about one half of the 
total thickness of the thinner sample. Since the the increase of normalized β ( ) is only related 
to the region where ASR damage occurs, the measured acoustic nonlinearity parameter β has 
similar amount of increase in thicker samples and thinner sample after 14 days exposure to alkali 
solution. 

Conclusions 

 The results clearly demonstrated the feasibility of using nonlinear ultrasonic techniques to 
track the progress of ASR damage in cement-based materials. This is significant in that nonlinear 
ultrasonic techniques have a number of unique advantages over the existing methods of 
characterizing ASR damage. 

 First of all, compared to the linear relationship between the expansion and exposure time, the 
acoustic nonlinearity parameter shows a stepped relationship with respect to exposure time as 
shown in Fig. 6a. Although more research is needed to understand the significance of these 
“steps”, it is plausible that such “steps” might be related to the different ASR damage modes. 
Secondly, as discussed before, the expansion of the concrete bar depends on the thickness of the 
sample. This means that the expansion-based methods, such as AMBT, the CPT, and ACPT, are 
not measuring the intrinsic characteristics of the ASR damage. On the other hand, nonlinear 
ultrasonic methods, such as the NWM method used here, measure the acoustic nonlinearity 
parameter which is a signature intrinsic to the state of ASR damage. Therefore, measurements 
from the NWM method are independent of the sample size as shown by our results. Last but not 
the least, unlike other existing nonlinear ultrasonic methods, the NWM method could detect the 
ASR damage at arbitrary locations. This could lead to ASR damage scan in the future. 

 The abilities of the nonlinear ultrasonic methods to provide the spatial variation, identify the 
different stages of ASR damage and to track the intrinsic characteristics of the ASR damage 
make such methods potentially useful tools for rapid screening of aggregates for ASR reactivity 
in the lab, and for field assessments of ASR damage in existing concrete structures. 
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III.1.9 Physics-based Models that Correlate the ANLP to ASR Damage 

Configuration of the Microstructure 

 The reactive aggregate and the representative volume element (RVE)  of concrete 
surrounding the reactive aggregate are assumed to be spherical [3]. The basic element of the 
microstructure in Fig. 2.1 is then a composite sphere composed of two different phases in which 
the ratio of radii Ra/RREV

a is a constant. Thus the basic element is independent of the absolute size 
of the spheres. 

 

Fig. 2.1. Definition of the Relative Elementary Volume for different reactive aggregate sizes 

Mathematical Model for Diffusion of Alkali Ions 

 To compare with our former experiment [4], two kinds of mortar samples with the dimension 
of 25×25×285mm (1×1×111/4in) and 100×100×285mm (4×4×111/4in) respectively are 
considered in our numerical simulations. Alkali ions penetrating from the specimen boundary 
into the concrete is considered as macro-diffusion process. Symmetry of mortar bars leads to 
two-dimensional diffusion problem governed by the 2D Fickian Equation [5], 

  2 2 2 2
, ,( ) ( / / )x y t xy

C
D C x C y

t


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
                                           (1.37) 

where C is the alkali ion concentration, and Dxy is the diffusivity of alkali ions at 80°C [2].  

 

Fig. 2.2. Ion diffusion in small and large mortar samples after 14 days 

Suppose the alkali ions penetrate with moisture, then Dxy can be determined by experimental 
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sample, while there is still a very large core in large mortar sample that the ion has not penetrated 
in as shown in Fig. 2.2. Note that the alkali ion concentration at the boundary of mortar sample is 
C0=0.1 mol/liter of solution [6]. 

 In our samples, the size of aggregates varies from 0.225mm to 3.56mm [2].  To compute the 
ion concentration near each aggregate, each mortar bar is divided into several layers with layer 
thickness of 5.34mm. As a result, there are three layers in small samples and nine layers in large 
samples. For simplicity, the ion concentration within each layer is assumed uniform and equal to 
the value at the middle point of each layer. 

 The micro-diffusion is the diffusion of alkali ions into the aggregate. This process can be 
described by Fick’s law in spherical coordinate as, 

  ( )ion
ion ion ion

C
B D C

t


  


 ,    (1.38) 

where Cion is the free ion concentration of the pore solution inside the aggregate. Bion and Dion are 
the binding capacity and ion diffusivity of the aggregate, respectively. The initial condition is 
Cion = 0 for t = 0 in the aggregate. The boundary condition is Cb = C(t) at the surface of aggregate, 
and ∂Cion /∂r = 0 at the center of the aggregate particle. Eq.(2) can be solved numerically using 
the finite difference method. 

 The ASR process takes place within the surface layer of each aggregate particle, where Cion 
reaches a certain concentration level Ccrt. One can inversely determine the thickness of the ASR 
layer, r, from the numerical solution of Eq.(2). The volume of the reacted portion of the 
aggregate particle of radius Ra can then be calculated, 

  
3 3

3
3

( ) 4
[ ]( )

3
Ra a a

a a
a

R R r
V R

R
 

  .  (1.39) 

This volume is converted into the volume of ASR gel, Vgel
Ra, 

  Ra Ra
gel aV V    ,    (1.40) 

where η is the coefficient volumetric expansion from aggregate to ASR gel.  

Mathematical model for permeation of ASR gel into the surrounding cement: 

 Because of the volumetric expansion when the aggregate is converted into ASR gel, the gel 
causes internal pressure near the interface zone between the aggregate and the surround cement.  
This pressure pushes the gel into the pores around this interface zone.  As more pores nearby 
are filled up with the gel, the pressure increases. which deformed the concrete.  The mount of 
gel that is capable of generating the internal pressure is given by 

  ,
Ra Ra Ra

gel eff gel poreV V V      ,   (1.41) 

where Vpore
Ra is the total volume of pores in the surrounding interface zone that can be calculated 

using, 

  Ra Ra
pore unit aggV V A   ,    (1.42) 

where Vunit is a material constant (a length scale) representing the capacity of the porous zone to 
absorb ASR gel per unit area, and Aagg

Ra is the surface area of an aggregate particle of size Ra. 
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When the effective gel volume Vgel,eff
Ra is larger than zero, the ASR gel begins to permeate. This 

process can be characterized by Darcy’s law for viscous flow as, 

  ( )gel gel
gel

gel

C
P

t





  


  ,   (1.43) 

in which Cgel and ηgel are the concentration and viscosity of the gel, respectively, κgel is the gel 
permeability of the porous cement paste, and Pgel is the pressure distribution of the gel, which 
depends on the degree of saturation of the pores. At the boundary, the interface pressure, Pint, is 
applied. However, as Pint is an unknown and a function of time, it needs to be calculated 
simultaneously from the equilibrium of the composite system (see micro-mechanical modeling), 
the diffusion of ions, and the permeation of the gel. So this is a coupled chemo-mechanical 
problem. 

 In order to solve the coupled equations, a state equation must be introduced, which relates the 
concentration of ASR gel in the pores, Cgel, the gel pressure Pgel, 

  gel gelC P  ,    (1.44) 

where β is the state function for cement paste [6]. The initial condition is Cgel (r, 0) = 0. The 
boundary condition at the interface is Cgel (Ra, t) = βPint(t), and at the far field is Cgel (RREV

a, t) = 
0. Eq.(13) can then be solved numerically using a finite difference method for the gel 
concentration as a function of radius and time, Cgel (r, t). The gel volume in the porous cement 
paste can then be evaluated by integrating the gel concentration over the surrounding cement 
paste, 

  24
a
REV

a

RRa
pg gelR

V r C dr    .   (1.45) 

The coefficient of expansion for the aggregate with radius Ra due to ASR is thus, 

  ,
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   
    (1.46) 

Micro-Mechanical Modeling 

Three-phase expansion model 

 By a standard homogenization argument, the micro-structural configuration shown in Fig. 1 
can be considered equivalent to that shown in Fig. 2.3, where phase 3 is the effective 
homogeneous medium equivalent to the heterogeneous medium in Fig. 1. Following the three-
phase expansion model developed by Jin et al [7], one can obtain the effective expansion 
coefficient for the two-phase composite as well as the interface pressure between the aggregate 
and cement paste. For brivity, we only list the results here, and details can be found in [6]. The 
effective expansion and interface pressure can be written as, 

  1
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where Ka, KSC are the bulk modulus of aggregate and cement paste matrix, respectively, GSC is 
the shear modulus of the cement paste, and V1 = Ra

3/ (RREV
a)3 is the volume fraction of aggregate. 

 

 (a)   (b) 

Fig. 2.3. (a) Three phase expansion model and (b) its mechanical properties 

 

The unknown parameter in Eq. (17) and (18) is the expansion coefficient of aggregate due to 
ASR, α1, which can be evaluated by Eq. (16). As one can see, both α1 and Pint involve the ASR 
gel formation due to alkali ion diffusion and the ASR gel permeation driven by interface pressure 
Pint. 

Damaged RVE 

 

 

Fig. 2.4. Mechanical property of damaged REV 

Since the Young’s modulus in cement paste matrix is much lower than in aggregate, crack will 
initiate at the boundary and propagate into the cement paste matrix. According to the Griffith 
criterion, the critical pressure for crack initiation can be obtained, 

  
( )

SC IC
cr

a r

E G
P

R c



 ,    (1.49) 

where ESC is the Young’s modulus of cement paste, GIC is the fracture energy of concrete, cr is 
the initial crack length in the cement paste. Once the interface pressure Pint exceeds the critical 
pressure Pcr, crack starts to propagate which causes a decrease in the modulus. This can be 
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described by a damage parameter [3], which is defined by, 

  CZ a
a
REV a

R R
d

R R





  ,   (1.50) 

where RCZ represents the crack front as shown in Fig. 2.4. The modulus of the equivalent 
medium Ed can then be determined, 

  (1 )d SCE d E    .    (1.51) 

The newly generated cracks also increase the volume of the RVE.  The amount of volume 
expansion induced by crack growth is given by, 

  1(1 )
1a
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c cV
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
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where 34
3 ( )a

REV

a
REVR

V R  is the volume of the RVE, cp and cpnew are the porosity of cement 

paste matrix before and after crack opening respectively. The total expansion is the linear 
superposition of αeff and αC, i.e.,  αtotal

Ra  = αeff
Ra +αC

Ra. Since the ASR induced expansion of 
aggregate is size dependent [6], the overall ASR expansion of concrete must be determined as 
the volumetric average of ASR expansion of the RVE with different sizes. For each aggregate, 
the final expansion should also include the volumetric average of each layer as described in 
macro-diffusion process. Thus the overall expansion is, 

  ,
a Ra

total a i total i     ,   (1.53) 

where a  is the volume fraction of aggregate with size Ra, 
a
i  is the volume fraction of each 

layer for a fixed aggregate size Ra, and ,
Ra
total i  is the ASR expansion of the concrete located at 

the ith layer with the aggregate size Ra. 

 Equations (1)-(23) form a complete model for ASR expansion. It is unlikely to solve the 
problem analytically because the diffusion and the permeation of gel are coupled with the 
interface pressure. Instead, a piecewise numerical procedure is adopted. More details can be 
found in [6]. 

Change of Acoustic Nonlinearity due to ASR Damage 

 The original acoustic nonlinearity parameter   only relates to material properties, and is 
usually defined as [8] 

  
4 2

(3 )
2

m l
 


  


 ,    (1.54) 

in which λ and μ are the Lamé constants, and l and m are the third order elastic constants (the 
Murnaghan coefficients). However, when material is under residual stresses, or experiences 
plastic deformations, the nonlinearity parameter   changes correspondingly as has been shown 
in extensive experimental results [9-15]. Our previous work has demonstrated the feasibility of 
using nonlinear ultrasonic techniques to track the progress of ASR damage in cement-based 
materials [4]. Here we want to predict the   change using our previous model validated by 



NEUP CFP-12-3736 Final Report   11/30/2015 

 

73 
 

expansion measurements of small mortar samples. An example of acoustic nonlinearity 
parameter   change in metallic materials due to dislocation and microcracks can be found in 
ref. [16]. Basically   change is a linear superposition of two terms, one is proportional to the 
initial stress and the other is proportional to the crack density. In our problem here, since the gel 
layer is also nonlinear, at least three factors can contribute to   change during ASR damage 

process: the nonlinearity from gel layer gel  as a function of gel thickness gel , the nonlinearity 

due to internal stress stress  as a function of interface pressure intP , and the nonlinearity caused 

by microcracks crk  as a function of crack density 0
crkN . Suppose the   change from these 

three factors is not substantial, as the first order approximation,   can be expressed as the 
linear superposition from these three terms as, 

  0 int 0( ) ( ) ( )crk
gel gel stress crkP N          (1.55) 

where 0  is the original material nonlinearity before cracking. The expressions of gel , stress  

and crk  will be given next. 

Nonlinearity β from the Gel Layer 

 Consider gel layer as a distinct layer, due to its aqueous behavior, there is no shear stress 
generated inside this layer. However, since the gel layer is nonlinear, it can cause nonlinearity to 
the whole three phase unit, whose structure is shown in Fig. 6.12. Suppose this three phase unit 
is subjected to a tensile stress 0  at the outer boundary as shown in Fig. 6.12, by calculating the 

tensile strain generated by the tensile stress at the outer boundary, one can get the expression of 

gel .  

Ra

Aggregate

Cement paste

R
c

Gel layer

σ0

σ
0σ 0

σ0

σ 0σ
0

 

Fig. 2.5. Three-layer unit subjected to tensile loading at outer boundary 
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 One can firstly get the displacement and stress expression within each layer from the 
equilibrium equation , 0ij j   as, 

In the aggregate, 

                       3a a
r a r a au A r K A     . (1.56) 

In the cement paste, 

  2 3/         3 4 /c c
r c c r c c c cu A r B r K A B G r      (1.57) 

In the gel, 

  2
1 2( )                     g g

r r g gu f r P a e a e     (1.58) 

in which aK  is the bulk modulus in aggregate, while cK , cG  are the bulk, shear modulus in 

cement paste respectively. P is the pressure in gel layer and ge  is the strain in gel layer. Since 

the gel layer is nonlinear, the stress and strain has nonlinear term in gel layer. The constant 2a  

corresponds to the third order elastic constant of gel layer. The displacement in gel layer g
ru  is a 

function of radius r, thus the strain in gel layer is 

  ' 2
( ) ( )g rre e e e f r f r

r      ,  (1.59) 

and the stress in gel layer should be 

  2 ' ' 2
1 2 1 2

2 2
( ) ( )g g g

rr g ga e a e a f f a f f
r r           . (1.60) 

From the equilibrium equation one can get, 

  
2

0rrrr

r r
     

 


 .  (1.61) 

Plugging Eq. (1.7) into Eq. (1.8), one can further get 

  

'' ' ' '' '
2

'
' ''2

2 2

2
( 2( ) ) 2( ) ( 2( ) ) 0

4
( 2 )( 2 2 ) 0

f f
a f a f f f

r r r

a f f
a a f f f

r r r

      

     
 . (1.62) 

The solution of Eq. (1.9) yields 2/g
r g gu A r B r   . Then the strain in the gel layer is 

2 3
g g
r r

g g

u u
e A

r r


  


. Plugging the strain in gel layer into Eq. (1.5), one can further get the 

pressure in gel layer, 

  22
1

1

3 ( 3 )g g

a
P a A A

a
   .   (1.63) 

  Next, the stresses continuity at the boundary of aggregate ar R  and at the boundary of gel 
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cr R  gives 

  ( ) ( )a c
r a r cR R P     .   (1.64) 

The stress at the outer boundary REVR  equals to the loading stress, 

  0 ( )c
r REVR    .    (1.65) 

The displacements at aR  and cR  are equal, 

  ( ) ( )      ( ) ( )a g g c
r a r a r c r cu R u R u R u R    . (1.66) 

Plugging Eqs. (1.3)-(1.5) and (1.10) into Eqs. (1.11)-(1.13), one can get a group of equations 

  

3 2

3
0

2

2 2

3 3 4 / 3 9

3 4 /

/

/ /

a a c c c c c g g

c c c c REV

a a g a g a

g c g c c c c c

K A K A B G R aA abA

K A B G R

A R A R B R

A R B R A R B R



    


 


   
     

. (1.67) 

From Eq. (1.14), one can eliminate , , ,g g c cA B A B  in function of aA  as 

  
3 3

0
3 3 3 3

1

( ) 3 ( )
a c REV

c a
c REV c c REV c

K R R
A A

R R K R R K


  

   
, (1.68) 

  
3 3 3 3

0
3 3 3 3

3 1

4 ( ) 4 ( )
a c REV c REV

c a
c c REV c c REV

K R R R R
B A

G R R G R R


  

   
, (1.69) 

 

3 3 6 3 3 3 3

6 3 3 3 3 3 3

3 3 3 3
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6 3 3 3 3 3 3
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12 ( )
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c c REV c c REV

c c c c REV c a a REV

R R K G R G K R K R K K G R R
A A

K G R R R R R R R

R K R R G R

K G R R R R R R R

 

   


  

 


  

, (1.70) 

 

3 3 3 3 3 3

6 3 3 3 3 3 3

3 3 3 3
0 0

6 3 3 3 3 3 3

(12 12 9 121

12 ( )

(3 4 )1

12 ( )

c a c c c c c a c REV a c c REV
g a

c c c c REV c a a REV

c a c REV c REV

c c c c REV c a a REV

R R R K G R G K K R K K G R
B A

K G R R R R R R R

R R K R G R

K G R R R R R R R

 

  
 

  




  

 (1.71) 

Note that aA  is dimensionless. We can further simplify this problem by two assumptions, 

a) a cR R d   with d  to be the thickness of gel layer. One can further get a c c gelR R R     

with the gel thickness ratio / 1gel cd R   . 

b) 2
1( )g gP a e be   with 2 1a a b  the third order elastic constant. b  is the ratio of third order 

over the second order elastic constant of gel. 
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Note that gel  and b  are both dimensionless. 

 One can now consider aA .  Based on the simplifications, one can obtain a quadratic 

equation regarding to aA  from Eq. (1.14), 

  2 2
1 2 3 0 4 0 5 0( ) ( ) 0a aW A W W A W W        (1.72) 

In which 1W  to 5W  are all the combination of modulus and radius in aggregate, cement paste 

and gel. Eq. (1.19) has the solution 

  

2 2
2 3 0 2 3 0 1 4 0 5 0

1

2 2 23 02
3 1 5 0 2 3 1 4 0 2

1 1 1

( ) 4 ( )

2

1
( 4 ) (2 4 )

2 2 2

a

W W W W W W W
A

W

WW
W WW W W WW W

W W W

   

  

     


       

. (1.73) 

This solution can be simplified by assuming 2
1 2Y W , 2 2 3 1 42 4Y W W WW   and 

2
3 3 1 54Y W WW  . Since the applied load 0  is due to ultrasonic wave vibration, it is very small. 

One can then expand the square root of 0  and get 

  

2
3 0 2 0 1

2 3
2 33 2 32 2 2

1 0 1 0 1 02 2 3
1 1 1 11

1 1 1 1 1
( ) ( )

2 2 8 4 16

Y Y Y

Y Y YY Y Y
Y Y Y

Y Y Y YY

 

  

 

      
 (1.74) 

Substitute Eq. (1.21) into Eq.(1.20), 

  

3 02

1 1

2 3
2 32 3 1 4 3 2 32 2

2 0 1 0 1 02 2 3
1 2 1 1 1 1

2 2

2 41 1 1 1 1 1
[ ( ) ( ) )]

2 2 2 8 4 16

a

WW
A

W W

W W WW Y Y YY Y
W Y Y

W W Y Y Y Y



  

  


      

 (1.75) 

To make the solution simpler, choose ‘+’ in Eq. (1.22) and one can get 

  
2 3

2 33 2 34 2 2
0 1 0 1 02 2 3

2 1 1 1 1 1

1 1 1 1 1
[ ( ) ( ) )]

2 2 8 4 16a

Y Y YW Y Y
A Y Y

W W Y Y Y Y
  

       (1.76) 

 Finally, we are ready to calculate  .  From Eq.(1.4), one can get the strain on the outer 
boundary as 

  
3

3 3
3 0 0

3 3

( ) 2

31
                      [( ) ]

2 3 2

c
cr

REV c
REV

a a REV c
c a

REV c c c c c

Bu
R A

r R

K K R R
R A

R R G K K G



 


  


   


 (1.77) 

Substitute Eq. (1.23) into Eq. (1.24), one can get 
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3 3
34

03 3
2

2 3
1 13 2 3 33 2 32 2

0 02 2 3
1 1 1 1 1 1

31
( ) {[ ( ) ]

2 3 2

3 31 1 1 1
( )( ) ( )( ) )}

2 2 8 2 2 4 16 2

a a REV c
REV c

REV c c c c c

a a a a
c c

c c c c

K K R RW
R R

R R W G K K G

Y YY K K Y Y K KY Y
R R

W Y Y G K W Y Y G K

 

 


   



      

 (1.78) 

According to Cantrell’s derivation [17], 

  

2
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1 1 12

2
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2
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 
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  

     

 (1.79) 

with 1  the initial stress that gives rise to an initial strain 1 . The nonlinearity parameter can 

be obtained from Eq. (1.26) as 
Q

P
   . Compared to Eq. (1.26), one can obtain   from Eq. 

(1.25) as 

  

3 3 2 3
3 2 32 2 2 2

03 2 2 3
1 1 1 1 1 1

3 3
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[ ( ) ( ) )]
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


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


 



 (1.80) 

Sine the ratio of gel thickness over the radius of aggregates gel  is very small, one can further 

expand   with gel  at 0gel   and keep the first order of gel . One can finally get, 

  1 2 0| |gel S S         (1.81) 

with 

 
2 3

1
1 2 2

1 1 1 1 1
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 (1.82) 
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   


     
 (1.83) 

in which 
3

1 3
c

REV

R
V

R
  is the volume ratio of aggregate. From Eq. (1.29) and (1.30) one can tell 

that the only parameter that varies with exposure time is the gel thickness ratio, g , and other 

parameters are all constants. Unfortunately due to lack of the information in gel modulus, one 
cannot decide 1a  and b in these equations. If we choose 1a  equals to water’s modulus 2.25 

GPa, and nonlinearity ratio in gel layer b=5, one can get an estimated nonlinearity 
2 6

02.67 10 4.2 10 | |gel gel gel       . So if the gel thickness ratio is 10%, the absolute 
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nonlinearity change is around 26.7 considering 0  is very small and 2S  is negligible. 

Nonlinearity β from the internal stress 

 To get stress , again we use the generalized self-consistent three-phase model in which the 

gel layer is not considered as a distinct layer. Instead, we only consider the precipitate strain on 
the interface generated by the gel expansion. According to Cantrell’s theory [18], acoustic 
nonlinearity in polycrystalline solids with initial stress can be expressed by, 

  
2

111 1111 111 12 1112 12 111 112 111
0 11 22 332 2 2

11 11 11 11 11 11 11

(3 ) (3 )( )
c c c c c c c c c

u u u
c c c c c c c

            (1.84) 

where 11 111
0

11

3
( )

c c

c
 

   is the acoustic nonlinearity parameter referred to the zero stress state 

X , and 11u , 22u  and 33u  are the averaged strain components. As the first approximation, we 

apply Eq. (1.84) to calculate the nonlinearity caused by internal stress. In this calculation, 

11 3 (1 2 )effc K v  , where v=0.2 is the Poisson’s ratio of this unit and effK  is the effective bulk 

modulus of the unit as shown in Fig. 6.6. One can get the effective bulk modulus, 

  1

1

(3 4 ) 4 ( )

(3 4 ) (3 3 )
c a c c c a

eff
a c c a

K K G V G K K
K

K G K K V

  


  
 (1.85) 

and effective displacement of the whole unit, 
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1
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with 1
1 int

1

4 ( ) (3 4 )

12 (1 )
c a c c a c
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V G K K K K G
P
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

 the expansion of aggregate. Since this unit is 

considered as effectively homogeneous, the averaged strain components can be obtained as 
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.    (1.87) 

Substitute Eq. (1.86) into Eq.(1.87), one can get, 

 1
11 22 33 1

1
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(3 4 ) 4 ( )
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This leads to, 
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 Assume that the Hiki-Granato relationship holds for the elastic constants, thus 11 122C C , 

111 1122C C , and 1111 11122C C . Applying them into Eq. (1.84), one can get, 

  
2

1111 111
0 112

11 11

(6 2 2 )
C C

u
C C

         (1.90) 

with 11 111 111
0
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3( )
(3 )

C C C
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 

     . 

Substitute Eq. (1.89) into Eq.(1.90), one can finally get 

  0 0 1
int

0 1
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stress c c
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  

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 (1.91) 

The only variable in Eq. (1.91) is the interface pressure intP  and all the other parameters are 

constants. However, again we cannot get the absolute value of the initial nonlinearity parameter 

0 . If we assume 0 50  , and for the internal pressure int 20P MPa , one can get the variation 

of  : 0

0

40%stress 



 . 

Nonlinearity β from the microcracks 

 Assume for our cement-based materials, we can still use Cantrell’s theory [17] based on 
metallic materials to calculate the nonlinearity change due to microcracks. So the nonlinearity 
change crk  can be expressed as 

  ' ' 2
0 0( / 7)[1 ( / 5)]crk crk

crk N N       ,  (1.92) 

where 
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can be represented by crack model parameters as follows: Sh  is the initial crack length; R is the 

crack radius, v is the Poisson’s ratio of the whole unit which equals to 0.2, 0( )sd  is the averaged 

crack length in each unit, 0
crkN  is the crack density per unit volume which is also a parameter of 

time. 

 As we only have the effective damage variable in our calculation, we cannot obtain the 
specific crack information like crack length, crack radius from our model. However, if we 
choose Sh  to be 0.00025×( a

RVER - aR ), R to be the radius of aggregate Ra, 0( )sd  to be one tenth 

of the thickness of cracked area and 0
crkN  to be inverse proportional to the volume change 
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caused by cracks V . For a typical aggregate with radius 0.89 mm, one can get 245crk   

after 14 days exposure time. 

Variation of gel , intP  and 0
crkN  during 14 days exposure time 

 In our numerical simulation, we can obtain the ratio of gel thickness (over the aggregate 
radius Ra) gel , interface pressure intP  and damage variable d which is dimensionless and can 

represent the crack density 0
crkN . Since these are the only parameters that vary with time, they 

directly determine the variation of nonlinearity parameter β during 14 days exposure time. As all 
the variables gel , intP  and damage variable d vary from sizes of aggregates and the location of 

each layer, to obtain a whole picture of gel , intP  and d up to 14 days, one needs to calculate the 

volumetric average of each size of aggregate and within each layer. From the foregoing 
discussions, we can get the volumetric averaged gel , interface pressure intP  and damage 

variable d up to 14 days exposure time in both small and large mortar samples as shown in Fig. 
2.6 – 2.8 respectively.  

 Since the interface pressure is generated by gel, the averaged interface pressure intP  should 

be directly related to the averaged gel thickness ratio gel . Therefore one can see from Figs 2.6 – 

2.7 that both gel  and intP  show a very similar trend for both small and large mortar samples. 

First of all, as alkali ion diffused very fast into the small mortar sample, the interface pressure 
built up very quickly, therefore both gel  and intP  increases very fast during the first few days. 

Secondly, in small mortar sample, both gel  and intP  shows a slower rate of increase after 

about 6 days. Refer to Fig.2.8, one can find that in small sample, at around day 6, the cracks 
were generated and after day 6, they propagated very fast. Due to the generation of microcracks, 
excess gel flowed into the cracks and part of the interface pressure was released. Furthermore, 
due to the crack propagation, both the correspondingly increased porosity and decreased 
Young’s modulus in cement paste matrix cause slower increase in gel , intP  after around day 6 

in small mortar sample. After 14 days, the gel thickness has reached around 16% of aggregate 
radius and interface pressure has come to around 17 MPa in small sample. 

 While in large mortar sample, both averaged gel thickness ratio and interface pressure shows 
almost a linear increase during 14 days exposure time. For the large sample, since alkali ion has 
only penetrated into the outer layers after 14 days, the correspondingly crack initiation is not that 
obvious, which is only 4% as shown in Fig. 2.8. Therefore both gel  and intP  shows almost a 

linear increase during 14 days exposure time. After 14 days, the gel thickness has only reached 
around 6% of aggregate radius and interface pressure has come to around 8 MPa in large sample. 
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Fig. 2.6 The volumetric averaged gel thickness ratio ( gel ) versus exposure time in small and 

large mortar samples 

 

Fig. 2.7 The volumetric averaged interface pressure ( intP ) versus exposure time in small and 

large mortar samples 

 While the damage variable d which can represent crack density shows a different trend of 
increase than gel  and intP  as shown in Fig. 2.8. As one can see, after 14 days, the crack 

density in small sample is around 3 times higher than that in large samples. In both samples, the 
damage becomes obvious at around day 6, and afterwards, in small sample, it shows a linear 
increase, while in large sample, the damage shows a faster increase after 12 days. This is because 
in large mortar sample, alkali ions have not penetrated thoroughly after 14 days. As more and 
more ions get into the large sample, the crack density keeps increase, and as a result, the damage 
shows a faster increase after 12 days. 
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Fig. 2.8 The volumetric averaged damage variable (d) versus exposure time in small and large 
mortar samples 

Predicting β variation during 14 days exposure time 

 Now we have obtained the expressions of   variation from three parts (gel layer, internal 
stress and crack density), we can then predict   change based on Eq. (1.2). However, due to 

lack of the information in gel layer, absolute original nonlinearity 0 , specific cracks size and 

distribution, we cannot determine all the constants to calculate  . To avoid the complexity of 
determining these constants, we simply use a weight parameter   to estimate the   variation 

from three parts. Note that since both gel  and intP  have similar trend of increase, they are 

combined together as a single parameter intP . Then we can get the normalized acoustic 

nonlinearity parameter   as, 

  int 0
0

1 | | (1 ) crkP N
  


       ,  (1.95) 

in which int| |P  is the internal stress normalized by its maximum value, int0 | | 1P  , and 0
crkN  

is the crack density normalized by its maximum value, 00 1crkN  . Since the acoustic 

nonlinearity change caused by cracks is much larger than initial stresses in metallic 
materials[16], as a reasonable approximation, the weight parameter   is taken in the range of 
0 0.5  . Compare to our ASR effect, 0

crkN  can be simulated by the damage variable d. 

 Follow Eq. (1.95) and let the weight parameter   vary from 0 to 0.5, one can get the 

normalized acoustic nonlinearity parameter   change up 14 days exposure time in alkali 
solution. Note that all the nonlinearity parameters from experiment measurements are normalized 
by their maximum value. The comparison between experiment measurements and numerical 
prediction is plotted in Figs. 2.9 – 2.10 for small and large mortar sample respectively. By 
comparing with experimental measurements, we observe in small mortar sample, when 0  , 
the predicted curve fits well with the experimental measurements. This is because the small 
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sample has damage everywhere after 14 days, the nonlinearity change is microcrack dominated. 
While in large sample, this is not the case. As shown in Fig. 2.7, when 0.2  , the predicted 
curve matches better with the experimental measurements. One possible explanation is that in 
large sample, since alkali ions have not penetrated thoroughly after 14 days, interface pressure 
also contributes to the nonlinearity change during 14 days exposure time. However, the results in 
both samples show that this numerical model can effectively capture the nonlinearity parameter 
jump at both day 7 and day 12. These jumps may indicate different stages of ASR process. 

Before day 6, since the ASR damage is only limited to the interface pressure built up,   

increase is very slow. After day 6, due to the rise of crack density as shown in Fig. 2.8,   
increase is accelerated. Finally after day 11, more cracks are formed which further reduces the 
Young’s modulus and increased porosity in cement paste. Consequently, there is another jump of 

 . So in all, our numerical model seems to be capable of predicting the acoustic nonlinearity 
change. 

 

Fig. 2.9. Predicted and measured acoustic nonlinearity change versus exposure time in small 
mortar samples 

 

Fig. 2.10. Predicted and measured acoustic nonlinearity change versus exposure time in large 
mortar samples 
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Limitations and Improvements of the Model 

 The model presented here is mainly based on a previous model developed by Jin et al.[7]. 
Several improvements can be made. 

 First, to predict the total expansion of the whole mortar sample, the consideration of macro-
diffusion process has been added to assess the localized alkali ion concentration of each 
aggregate before conducting micro-diffusion process. By adding the macro-diffusion process, the 
overall expansion makes more sense since the mortar sample has certain thickness and the alkali 
ion concentration should not be the same for each aggregate with different locations. 

 Second, due to the large interface pressure generated on the surface of certain aggregates, 
crack initiation has been added to get more accurate expansion. In this new model, damage 
variable is introduced. It is tightly related to the crack density, porosity, as well as Young’s 
modulus change of cement paste matrix and finally contributes to the prediction of acoustic 
nonlinearity change, which is in very good agreement with experimental measurements. 

 Finally, the model was developed with several assumptions (about the diffusion, the 
composition of the ASR gel, the mechanical properties of cement paste matrix after crack 
initiation, etc.). To get more accurate prediction of acoustic nonlinearity change, the exact micro-
scale material constants as shown in Eqs. (1.28), (1.91) and (1.94) needs to be determined. 
Supplementary investigations are also needed before it can be applied to real structures. In 
particular, the effect of temperature on all the chemo-mechanical and micromechanical 
mechanisms needs to be analyzed. 

Conclusion 

 This Appendix presents a new model to predict acoustic nonlinearity change during ASR 
damage. This new model mainly includes three parts. The first part is the chemo-mechanical 
model which accounts for two opposing processes. One is the diffusion of alkali ions from 
surface of mortar sample to the surface of each aggregate (macro-diffusion process) and the 
diffusion of localized alkali ions in the pore solution into each aggregate. The other is the 
permeation of ASR gel from the aggregate surface into the surrounding porous cement matrix. 
The second part is the micromechanical model based on a modified version of the generalized 
self-consistent theory. The last part is the fracture model which simulates the crack initiation and 
growth. A damage variable is introduced in this part to get the crack density and total expansion. 
Finally, the acoustic nonlinearity parameter is determined as a function of exposure time based 
on gel thickness, interface pressure and the crack density caused by gel expansion. This 
numerical model is first validated by curve fitting of the crack opening speed based on the 
expansion measurement in small mortar samples during 14 days, then the validated model is 
used to predict the acoustic nonlinearity change up to 14 days exposure to alkali solution. The 
results of numerical prediction and experimental measurements of acoustic nonlinearity are in 
very good agreement. Although more experiments on aggregates with different activities are 
needed to further validate this model, the present work has shown that the proposed method has a 
good potential to quantitatively predict the acoustic nonlinearity variation during ASR damage 
and can be used to guide experimental measurements in the future. 
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III.1.10 Physics-Based Models for ASR Damage Evolution 

Model Description 

 A novel approach, entitled ASR-LDPM [19] was formulated to simulate the effect of ASR on 
concrete structures. ASR-LDPM implements, within the mesoscale framework of LDPM, a 
model describing ASR gel formation and expansion at the level of each individual aggregate 
particle. ASR-LDPM was calibrated and validated with reference to several sets of experimental 
data dealing with ASR effects on concrete under a variety of different loading and environmental 
conditions with the limitation to saturated conditions. 

 The main effect of ASR is a progressive deterioration of concrete stiffness and strength that 
results from the long term formation and expansion of ASR gel inducing expansive pressure on 
the internal structure of concrete. This pressure causes non-uniform deformations that eventually 
lead to cracking and damage. While the chemical description of the reaction was addressed 
intensively in the literature, the fracture mechanics associated with the progressive expansion has 
received little attention due to the lack of models describing concrete internal structure 
satisfactorily. The main objective of the ASR-LDPM model is to fill this knowledge gap. 

 Despite some success, the common disadvantage of the various models previously developed 
is the inability to simulate crack patterns and crack distribution due to ASR. This, in turn, limits 
the ability to predict the degradation effect of ASR and forces the assumption of 
phenomenological relationships between ASR gel expansion and concrete mechanical properties. 
In addition, it also limits the ability of such models to explain complex triaxial behavior of 
concrete under ASR and also forces the assumption of phenomenological relationships between 
ASR gel expansion and stress state. These limitations are inherently connected to modeling 
concrete as an isotropic and homogenous continuum. 

 ASR-LDPM overcomes these problems by modeling ASR effects within the Lattice Discrete 
Particle Model (LDPM) [20, 21]. LDPM, in a full 3D setting, simulates the mechanical 
interaction of coarse aggregate pieces through a system of three-dimensional polyhedral 
particles, each resembling a spherical coarse aggregate piece with its surrounding mortar, 
connected through lattice struts [20, 21] and it has the ability of simulating the effect of material 
heterogeneity of the fracture processes. ASR-LDPM introduced here is limited to fully saturated 
conditions as the consideration of water macro diffusion will be considered in the future work.  

Model Basic Assumptions 

In the formulated model, the following assumptions were used. 

(1) Water needs to be available in the pores to act as transport medium for hydroxyl and alkali 
ions for ASR to occur. 

(2) The expansion of ASR gel is mostly due to water imbibition. 

(3) Continuous supply of water is needed for the swelling to continue over time. 

(4) The aggregate particles are assumed to have spherical shape. 

(5) The whole volume of each particle is assumed to be reactive. 

(6) Silica is smeared uniformly over each aggregate volume.  
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(7) Under these approximations, the dissolution of silica may be assumed to progress roughly in 
a uniform manner in the radial direction inward from the surface towards the particle center.  

(8) Only saturation condition is considered so far. This case has practical relevance in situations 
in which concrete is continuously exposed to water. The effect of relative humidity change is 
to be considered in the future work. 

(9) Shrinkage and possible creep are compensated using relevant models in literature (B3 and 
CEB models) but not implicitly coupled with the formulation. 

Model Formulation 

 Based on the aforementioned assumptions, two main processes have been formulated and 
connected; (1) Basic gel formation, and (2) Water imbibition, then volume increase due to water 
imbibition is translated into inhomogeneous gel strain, and is imposed on the concrete meso-
structure using the LDPM model. The highlights of each part are as follows. 

Gel Formation 

 The gel mass Mg generated from an aggregate particle with diameter D, is derived from 
solving the steady state mass balance of the radial diffusion process of alkali rich water into the 
aggregate particle. The solution is given by, 

                       (3.1) 

where mg = 94.1 g/mole, ms = 60.09 g/mole are the gel and silica molar weights respectively, ζ = 
2z/D is the non-dimensional reaction front position where z is the reaction front position 
measured from aggregate particle external surface, cs is the silica content assumed here for lack 
of experimental data to be 440 kg/m3, and κa accounts for the fact that alkali content available in 
the cement paste surrounding each aggregate particle, is not always enough for the ASR reaction 
to occur. In other words, the discussed availability of water at reaction front is not a sufficient 
condition for ASR and such water needs to be alkali rich. In this study, in absence of more 
detailed information, a simple linear relationship between alkali content, ca, and the produced gel 
mass is assumed: κa = min(ۦca − c0aۧ /(c1a − c0a), 1), where c0a is the threshold alkali content at 
which, no or minimal expansion is observed, and c1a is the saturation alkali content enough for 
complete silica reaction. 

Water Imbibition 

 The water imbibition process was described by relating the rate of water mass Mi imbibed by 
gel to the thermodynamic affinity and a characteristic imbibition time. This leads to the 
following expression, 

          (3.2) 

where R is the universal gas constant, T is the absolute temperature in Kelvins, T0 is a reference 
absolute temperature where the imbibed water at thermodynamic equilibrium has been assumed 
to be proportional to the mass of formed gel and temperature-dependent through an Arrhenius-
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type equation governed by the activation energy of the imbibition process Eai. δ is the average (or 
effective) distance of water transport process from the concrete around the aggregate into the 
ASR gel. The micro-diffusivity Ci for microdiffusion of water close to the aggregate was 
considered to be a decreasing function of Mi, because the imbibition of the layers of gel increases 
the diffusion time of the free water to reach the not imbibed gel. This phenomenon can be 
captured by setting Ci = Ci0exp(−ηMi), and η(Mi) is an increasing function of Mi.  

Analysis of experimental data carried out in this study suggests that, in absence of more precise 
information about the water imbibition process,                                       
Where                for T0 = 23◦C = 296◦K. 

Lattice Discrete Particle Modeling of ASR Effect 

 To account for ASR in LDPM, first the radius variation of each aggregate particle of initial 
radius r = D/2 can be calculated from the volume variation of the ASR gel due to water 
imbibition: 

    (3.3) 

This result can be then used to calculate an incompatible ASR strain to be applied to the LDPM 
system assuming that strain additivity holds: where the total strain on each LDPM facet is given 
by 0t

N N Ne e e   where  0
2( )N ce r r l      ; ∆r1 and ∆r2 are the radius changes of the two 

aggregate particles sharing a generic facet; l is the distance between these two aggregate 
particles; and Ne  is the normal strain that is calculated according to the LDPM constitutive 

equation. 

 After calibration, the model is able to capture (1) the general characteristics of ASR S-shaped 
expansion versus time curves; (2) the effect of stress states on observed expansion; (3) the effect 
of expansion on concrete strength; (4) the effect of alkali content; and (5) the effect of 
temperature. 

Application of the Model to the Experimental Results 

 The relevant results for small specimens carried out here were used to calibrate the model 
which was able to accurately capture the expansion curves with very high accuracy as shown in 
Fig. 3.1a. 
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(a) 

 

(b) 

Figure 3.1: a) Experimental and numerical expansions, b) Simulated Crack patterns in the 
specimen after 14 days 

 

 In addition, the model is capable of reproducing the corresponding crack patterns found in 
the experiments as shown in Fig. 3.1b. 

 The model can reproduce the current damage state of the specimens and as it is now 
calibrated on the given expansion history, it can predict the remaining expansion history and 
hence, the expected strength reduction. 

Refinement of the ASR-LDPM Model to Account for Alkaline Macrodiffusion 

 The current model was improved by adding the alkali ion diffusion to it. In this regard, two 
important modifications were formulated as follows, 

Solution of Diffusion Problem 

 Here, two assumptions were made: 1) The diffusion process can be assumed as a 2D 
diffusion as sample cross section dimensions are much smaller than its length, 2) Constant 
diffusion coefficient is used as the self dissication of concrete effect on internal relative humidity 
was neglected, this is because specimens already have high water to cement ratio (0.5) and they 
are immersed in water for the whole curing and test period. Based on that, an implicit integration 
method (The alternating Directions implicit) with Crank Nicolson scheme was implemented to 
solve the 2D diffusion problem. This method discretizes the solution as follows 

         (3.4) 

where Ut, Uxx and Uyy are the first time derivative, second spatial derivative in x and second 
spatial derivative in y, respectively. D+ is the forward Euler operator and D0 is the central 
difference operator, C is the constant diffusivity parameter. 
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 In addition, the ASR-LDPM model deals with the concentration of ions as an overall alkali 
content in kg/m3 of concrete, while the diffusion process is in terms of moles/Littre. So, after 
solving for the concentration, it is converted into alkali content. The final alkali content 
distributions for small and large samples of 1”X1” and 4”X4” after 14 days have the profiles 
shown in Fig. 3.2a and b respectively. 

  

Figure 3.2: a) Small Sample, b) Large Sample 

 

Consideration of Variable Alkali Content on ASR-LDPM Formulation 

 The ASR-LDPM model was formulated for fully saturated conditions with uniform alkali 
content over the concrete volume. This is the condition of mostly all real structures in which, the 
source of alkali is the initial alkali content of the concrete mix and water just helps transferring it 
into the aggregates, so the alkali ions only undergo micro diffusion. This is also the same case 
for long term concrete prisms and cylinders experiments, as the alkali content is increased by 
adding alkali to the mixing water, then after curing, the specimens are either sealed or kept in 
various humidity conditions. For the special case of accelerated mortar bar test, the source of 
alkali becomes the water in which the bar is immersed after curing. In this case, alkali undergoes 
both macro and micro diffusion to reach the aggregate. For this case, the reaction front evolution 
with time is delayed due to the alkali macro diffusion process. In ASR-LDPM, the alkali content 
effect is introduced through κa as a reduction factor of the formulated gel mass. To extend its 
effect to the reaction front evolution, the cubic root of κa is moved to the reaction front rate. The 
initial ASR-LDPM gel mass equation is modified as, 

                   (3.5) 

where the reaction front speed can be approximately given by,  

a) b) 
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                    (3.6) 

For a wide range of different constant alkali contents both old and new formulations give very 
close results as in Fig. 3.3. 

 

Figure 3.3: Comparison between old and new model considering variable alkali content. 

Simulating Acoustic Nonlinearity Change in Small Specimens 

 At this stage, the model is mature enough to start simulation the acoustic nonlinearity change. 
So, to check the capability of the model to predict realistic acoustic response, the model was used 
to simulate the experimental measurements on the small samples 1” X 1” cross-section. The 
work was done on the following stages 

Calibrating the Mechanical Model Parameters 

 This was done by simulating the mechanical tests done on similar specimens which were 
three point bending tests (Fig. 3.4a) and by matching the unconfined compressive strength 
reported in the same experiment which was 40.70 MPa [22]. 

 

(a) 

 

(b) 

Figure 3.4: a) Calibration results for the Mechanical model parameters on 3 Point bending test b) 
Calibration results for the ASR model parameters on expansion of small specimens 
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Calibrating the ASR Model Parameters 

 This was done by simulating matching the average expansion of small specimens  (Fig. 
3.4b). In this simulation, the diffusivity of alkalines was assumed based on experimental values 
from literature [21]. 

Numerical Simulation of Ultrasonic Wave Experiment 

 A pressure wave was applied at different time intervals on one side of the simulated 
specimen by applying a sinusoidally varying pressure load with 0.25 MHz frequency. On the 
opposite side, the velocity of the nodes corresponding to the receiver area was gathered over time 
as shown schematically in Fig. 3.5.   

 

Figure 3.5: Schematic drawing of the experiment simulation 

 Both velocity histories are shown in Fig 3.6a. By doing FFT (Fast Fourier Transform) of the 
received signal, a clear second harmonic can be found, which shows the capability of the model 
to reproduce acoustic nonlinearity behavior (Fig. 3.6b). The change in acoustic nonlinearity over 
the test period is simulated by doing the same simulation at different time points (2, 4, 8 …, 14) 
days, then a numerical β can be defined as 2

2a a    assuming that the initial numerical β0 

equals zero (corresponding to zero initial cracking in the model), the normalized β can be 
calculated as 

          (3.7) 

The model results show very good agreement with the numerical data, which suggests a large 
dependence of the acoustic nonlinearity on cracking. Fig. 3.6c shows the normalized numerical 
and experimental values. 

 

Figure 3.6: a) Sent and received velocities, b) Frequency content of received signal, and c) 
Experimental and numerical acoustic nonlinearity change.
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III.2 Report of the 2nd year 

III.2.1 Calculation of ASR Activation Energy 

Introduction of Activation Energy 

Alkali-silica reaction (ASR) is a deleterious chemical reaction. To predict ASR damage in 
concrete, the study on reactivity of ASR is needed and it is closely related to the activation 
energy the ASR. Activation energy is considered as the height of the potential barrier for a 
chemical reaction and it can be obtained experimentally.       

Weight Loss Measurement 

As a fundamental approach to study characteristics of ASR, measurement of weight loss of 
reactive aggregates was carried out. This experiment is mainly for calculating the reaction rate of 
ASR from which activation energy can be gained. To this end, aggregates were placed in each 
container filled with 0.5N, 2N and 4N alkali solutions, respectively. Each container contains 10 
aggregates.  These containers are then placed in environmental chambers with the temperature 
set at 40 Ԩ, 60 Ԩ and 80 Ԩ, respectively, see Fig. 1-1. 

The aggregates were taken out from the containers each day at the same time. They were first 
rinsed in clean water carefully to wash off the gel grow on the surface. Then, they were placed 
on a high-accuracy scale one at a time to measure their individual weight loss after weight loss.  

   

 

Fig.1-1 Experimental Setup 
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Activation Energy Calculation 

As shown in Fig. 1-2, the weight loss represents the amount of aggregates being consumed by 
the ASR.  Therefore, it is proportional to the ASR rate.  Thus, the ASR rate constant k can be 
calculated by taking the derivative of the weight loss W  with respect to time. 

 

Fig. 1-2 weight loss of an aggregate 

In other words, the rate of ASR is r W t k    . We note that all quantities are temperature 
dependent.  On the other hand, rate of reaction should satisfy the Arrhenius' equation, 

exp( )aE
k A

RT
  , where A is a constant, R is the standard gas constant, and T is the absolute 

temperature.  Thus, one may write exp( )aE
W t A

RT
    .  From this equation, the activation 

energy can be written as log log( )aE RT A RT W t    . 

Experiment Results 

Fig. 1-3 shows that %weigh loss of aggregates caused by ASR with respect to the exposure time 
of aggregates to alkali solution where % weight loss is defined as ( ) 100W W  . 

 

Fig. 1-3 %Weight Loss of Aggregates 
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Several observations can be made. (1) The W W  vs. time curves are straight line for a given 

temperature; (2) the slop of the W W  vs time curves increases with increasing temperature, 

thus the rate of reaction increases with increasing temperature; (3) W W  increases with 

increasing alkali concentration, but the slop of the W W  vs time curves do not seem to 
change much with the alkali concentration. 

We note that the experimental data shown in Fig. 1-3 is the average of 10 aggregates under each 
condition.  The raw data are rather scattered.  Careful analysis seems to show that the scatter is 
primarily due to the variation among the individual aggregates, particularly their shape and size.  
Next quarter, we plan to use glass beads to repeat the measurements.  
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III.2.2 Physics-based Models that Correlate the ANLP to ASR Damage 

Nonlinear Alkali Diffusion 
Ion diffusion involves very complicated phenomena that usually require multi-physics 
formulations. For the special case of AMBT, the specimen is almost fully saturated and any loss 
of saturation due to self dissecation can be quickly compensated as the thickness of bars is 
relatively small. Assuming no water macro diffusion allows for simplifying the alkali ion 
diffusion using a nonlinear diffusion problem. While there are many researches available in 
literature on ion diffusion through concrete, very limited amount is dealing with alkali diffusion 
modeling and most of the literature deals with chloride ingress into concrete as part of corrosion 
modeling of RC structures. Adding to that, the very limited experimental data, as the diffusion 
measurements are not required by code standards and also are not easy to measure, a reasonable 
general model for nonlinear ion diffusion was adopted based on [1]. The model assumes that the 
nonlinearity comes from two parts, ion binding to the solid C-S-H gel, and nonlinearity of the 
diffusion coefficient. A further simplification of this model can be obtained by considering the 
special case of sodium ion diffusion. For sodium, experimental data by [2] suggested a constant 
distribution ratio of sodium concentration in pore solution and C-S-H structure which means a 
linear relation between the binding capacity and concentration. So, one can eliminate the 
nonlinearity coming from the binding capacity and simply solve a nonlinear diffusion problem 
with nonlinear diffusion coefficient Di.  

 
The shape of the diffusion coefficient Di dependence on alkali concentration ci is assumed to be 
similar to the water diffusion coefficient in [3] as follows; 

 
Where Dmax is the maximum diffusion coefficient corresponding to a specific alkali 
concentration ci

max, Dmin is a minimum diffusion coefficient at zero alkali concentration and n is 
assumed to be a material parameter. Figure 1a shows the change of the diffusion coefficient as a 
function of the alkali concentration. The solution of the diffusion problem is carried out using 
explicit 3D forward Euler discretization. Space discretization is within the size of the minimum 
simulated aggregate size. The calculation of time step was done considering the maximum 
anticipated diffusion coefficient (which represents the PDE traveling speed). At each LDPM 
mesh node, space and time interpolation is performed to feed the ASR-LDPM model with the 
evolution of alkali content ca over time. Note that the diffusion solution is in concentration units 
ci (mole/liter) while the ASR model uses alkali content units ca (kg/m3), so the values are 
converted using the molar weight of NaOH of 40 gm/mole which gives ca = 40 ci. 
The next step was to calibrate the ASR and diffusion parameters. Due to lake of experimental 
data, only guidelines about diffusion parameters were available. Calibration was performed on 
two steps: first, using a simplified 2D linear diffusion model with the Dxy=1.2e-6 m2/s as 
reported in [4], the ASR parameters were calibrated to match the expansions of the small 
specimens, then, fine tuning of the ASR parameters and the 3D nonlinear diffusion model 
parameters was performed to match both expansions of the small and large specimens.  
The analyzed experiments are relevant to (1) a very accelerated reaction, (2) all aggregate are 
reactive; and (3) very high temperature of 80 C. Under these conditions it is likely that all pores 
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surrounding each reactive aggregate surface were filled quickly with ASR products during 
curing. In this case, it is reasonable to assume δc. In addition, since the experimental data did not 
contain information on temperature effect, the reference temperature T0 was assumed to be equal 
to the room temperature (80 C= 353 K) at which the experiments were carried out. 
The remaining ASR parameters were calibrated with the diffusion parameters and gave the 
values (as0=7.8125*10-11 m2/day, $C0

i=5.51*10-13 m2/day. η =10,000 kg-1, ca
0 =0.50 kg/m3, 

ca
1=25.0 kg/m3 Dmax=2*10-5 m2/day, Dmin =2*10-6 m2/day, n=3, ci

max=1.00 mole/liter. Figure 1b,c 
show the alkali concentration distribution over the cross section of the small and large specimens 
at their center after 14 days respectively. The large specimens show very limited extent of alkali, 
while the small one has been fully saturated with alkali after 14 days. The results of this 
difference can describe the lower expansions measured on large specimens and also it gives 
reasons for the cracking recorded both experimentally and numerically as will be discussed later. 
Finally, the simulated expansions of both small and large specimens are compared with the 
averages of experimental data as shown in fig. 1d. It should be noted that the measurement on 
experimental specimens were taken between the center points of the specimen ends, and for very 
small expansions, heterogeneity and initial errors can be large, and that is why the measurements 
in the beginning look unusually large. 
 
Simulation Results 
Here, the results of simulation are shown. Simulations were carried out on half-length specimens 
(125 mm out of the 250 mm length) to reduce computational cost by making use of symmetry. 
At the centerline, symmetry restraints were applied. The actuators and receivers were simulated 
by square areas of 15 mm edges aligned on opposite faces. The simulation of ultrasonic wave 
was done by applying a sinusoidal varying pressure at a frequency of 0.25 MHz on the actuator 
area. The pressure replicates the applied wave from the actuator. Arrangement of actuators and 
receivers is shown in fig. 1e. As the explicit algorithm used for solving the dynamic equation of 
motion is based on a mid point equation for the velocity, this means that the velocity has a 
second order accuracy while displacement is only first order, so, the measured quantity at both 
actuators and receivers was the velocity. A typical velocity time history at the actuator and the 
corresponding received one at the receiver is shown in fig. 1f. The frequency domain of the 
received velocity signal is obtained by using Fast Fourier Transformation (FFT). As, shown in 
fig. 1g, the amplitudes of first and second harmonics (amplitudes at the fundamental frequency 
of the incident wave and at twice that frequency) are extracted and β is calculated. The 
simulations for ultrasonic wave effect are very expensive computationally, because it requires a 
very small time step to be able to replicate the very high frequencies generated. In this 
simulation, a time step of 2.5*10-9 sec was used. This time step allows the sampling of one cycle 
at 0.25 MHz with 1600 points and at 0.50 MHz (second harmonic frequency) with 800 points. 
With this sampling, the accuracy of capturing high frequencies was achieved. Here, it should be 
mentioned that the natural time period of the smallest element in the model (which controls the 
maximum stable time step for the explicit algorithm) was 1.4*10-7 sec, so the used time step was 
about 1/56 times the smallest time period. Simulation of ultrasonic measurements was done at 
two days intervals, so for both small and large specimens, simulations were done at 2,4,6,8,10,12 
and 14 days. For each time, the ASR expansion simulation is held still and the ultrasonic wave is 
introduced. 
For the small specimens, 3 different geometries were generated. For each half specimen, the four 
actuators shown in fig. 1e were utilized. For each actuator the pressure wave is sent and the 
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velocity time history at the corresponding receiver is gathered. After applying FFT, β is 
calculated for each received wave. The sum of all four values at each time for one specimen, 
represents its β evolution over time. The values for each specimen are normalized by dividing all 
of them by the maximum value encountered for this specimen. Finally, the normalized β 
evolutions of the three specimens were averaged and plotted in fig. 1h versus the average values 
from experimental data corresponding to 3 specimens with 3 measurements for each. Recalling 
that the scatter in experimental data is quite big, the simulated values can be generally considered 
in excellent agreement with experimental ones. To give more insight of the physics involved, the 
cracking evolution was examined. Normalized average crack volume was obtained by summing 
the volume of cracks (crack opening of each facet multiplied by its area) at each time point then 
dividing by the maximum value over time. In addition, normalized maximum crack volume was 
calculated by recording the maximum crack volume at each time point then dividing by the 
maximum value over time. Both evolutions are presented in fig. 1h. While both evolutions 
correlate very will with both experimental and numerical evolutions for β, the maximum crack 
volume is closer to the experimental data and seems to be an average curve of the numerical 
simulations, while the average crack volume is matching the numerical β evolution exactly from 
4 to 8 days, but it deviates a little more than the maximum crack volume curve later. Regardless 
of these very slight deviations, the correlation between acoustic nonlinearity and cracking 
volume is very evident and clear from fig. 1h.  
Large specimens are extensively computationally demanding (its cost is 16 times the cost of 
small specimen) so, only one half specimen was used for ultrasonic simulation. It should also be 
mentioned here that, with larger specimens and distributed damage, difference in simulated 
response due to difference in samples is very small and can be safely neglected. The values of 
$\beta$ were obtained from the first 3 receivers and the 4th was neglected because it was too 
close to the boundary zone here. The results obtained at each receiver were summed and 
normalized by their maximum value. Experimental values were obtained by averaging the 
evolutions of two large specimens and plotted along with numerical β evolution in fig. 1i. Even 
more accurate results were obtained here. Only very slight deviation at 8 and 14 days. But it 
should be noticed that the experimental data again showed a big amount of scatter. For the crack 
volume correlation, it is also clear from fig. 1h that both maximum and average crack volume 
evolutions are perfectly correlated with both experimental and numerical β evolutions. Here it is 
actually very hard to tell which crack volume evolution matches better as both are very close. 
In summary, figs 1h and i show that the evolution of acoustic nonlinearity parameter in concrete 
is mostly a function of the amount of cracking. 
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Figure 1: a) Nonlinear alkali diffusion coefficient change with alkali concentration. b) Alkali Concentration 
[mole/litre] distribution over mid section of small specimen at 14 days. c) Alkali Concentration [mole/litre] 
distribution over mid section of large specimen at 14 days. d) Axial expansion evolution for small and large 
specimens. e) Actuator and receiver positions on simulated half specimens. f) Typical velocity time histories at an 
actuator and the corresponding receiver. g) Typical frequency content of the velocity time history at the receiver. h) 
Experimental and numerical β evolution for small specimens with normalized maximum and average crack volume 
evolution. i) Experimental and numerical β evolution for large specimens with normalized maximum and average 
crack volume evolution. 
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III.2.3 Rate of Moisture Diffusion in Cement Pastes and Alkaline-Silica Reaction 

Introduction 

 In this task, we focus on experimental investigation of the diffusivity of moisture in cement 
pasts and the rate of ASR. To this end, 2” (5.08cm) cubic hydrated cement paste samples were 
prepared and their moisture absorbing behaviors were observed. It was found that higher 
concentration of alkali solution encourages the sample to absorb more amount of water from the 
solution. In addition to the weight gaining measurement, the microcopy was taken to see cross 
sectional area of each sample. A measurement with a glass bead was also carried out where 
reaction speed of silica with respect to different degree of alkalinity was found.  

Sample preparation  

 2” (5.08cm) cubic hydrated cement paste samples were prepared. The type I cement 
(potential Bogue composition 46.11% C3S, 22.93% C2S, 8.52% C3A and 9.59% C4AF and 0.83% 
Na2Oeq) is used. Aggregates which are usually mixed with cement to make a normal concrete 
are replaced by a single glass bead for this experiment to make the bead serve as an only agent 
providing siliceous ion. The photo of the glass beads are shown in Fig. 1 and its diameter is 
approximately 10mm. The composition of the glass bead is described in Table 1. While sand and 
gravel are added to cement mixture to make a usual concrete, only cement powder and a glass 
bead are mixed with water to make this sample. This measurement has been done twice with 
water to different water to cement ratio and different range of various concentrations.   

 

Fig. 1 Soda-Lime Glass Bead 

 

Table1. Chemical composition of glass bead 

Properties Chemical Composition wt% 

SiO2 74 

Na2O 13 

CaO 10.5 

Al2O3 1.3 

K2O, SO3, MgO, Fe2O3 and TiO2 0.45 

 

A planetary mixer was used for the mixing and well mixed cement paste was poured into the 
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molds as shown in Fig. 2. 

 

 

Fig. 2 Pouring cement paste into 2” cubic molds 

4 batches of different concentration solution were prepared which vary from 0N to 4N where 1N 
indicates 40g of NaOH beads per a liter of pure water. Prepared 6 samples were put into the 
batches. 6 samples were divided by two categories; 3 samples have the glass bead in its body and 
the other 3 are pure cement block without the bead in side.  Finally, total 24 samples were 
immersed in the solutions and their weight changes were monitored day by day. As an initial 
temperature, 50°C was chosen.  

 

Fig. 3 Schematic diagram of hydrated cement paste sample weight change test 
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Result of Hydrated cement paste sample weight change with 0.33 w/c ratio 

 The immersed samples were taken out each day for the weight gaining measurement. Results 
of the % weight gaining of samples are plotted in Fig. 4 as function of the number of days under 
50°C alkali solution exposure by using equation (1). 

                             
initial

initial

100(%)
thn day

W W

W


  (1) 

 

Fig. 4 Result of weight change with 0.33 w/c ratio 

It is shown that samples immersed in the alkali solution slowly and continuously absorbed water. 
From this graph, it is seen that higher concentration enhances the amount of water absorbed by 
the sample. However, the result can be considered as initial weight gaining of the sample due to 
its slow water absorption and it shows that it is necessary to accelerate of the test by modifying 
experimental setup.    

Result of Hydrated cement paste sample weight change with 0.5 w/c ratio 

To accelerate the test speed and reach the plateau of the weight gaining result, some experimental 
conditions are modified. Firstly, water/cement ration increased from 0.33 to 0.5 for the sample to 
have more pores which are used as the path of water absorption. Secondly, hydrated cement 
paste samples were prepared by taking initial treatment procedure described by AASHTO T 303 
where all samples are immersed in 80°C pure water for 24hours. Lastly, the variation range of 
concentration is changed to have finer increment step.   
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Fig. 5 Result of weight change with 0.5 w/c ratio 

Fig. 5 shows the result of weight gaining test with respect to different concentration. Here, the 
sample whose name has ‘G’ stands for the one having a glass bead inside of the sample. 
Otherwise, samples do not have a glass bead; pure cement sample. It is seen that initial slope of 
the weigh gaining during the first 4 days varies with different concentration. Here the graph 
shows higher concentration solution has steeper slope. Moreover, the data sets reach saturation 
point in 18days and it is interestingly seen that higher alkalinity induces more water absorption. 
Its reason is being sought for and will be explained in the next quarterly report.  

Microscopy 

The sample embedded in Alkali solution after 25 days and 60days were cut to see cross-section. 
The microscopy specimens were then polished on a grinder/polisher to make the surface clearly 
visible. Digital images of the surface were taken. 
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Fig. 6 Microscopy in the sample after 25days 

 

Fig. 7 Microscopy in the sample after 60 days 

As shown in Fig 6, darker part is glass bead and brighter part is cement. ASR gels are hardly 
found with the samples after 25days of exposure. On the other hand, the cross sectional areas of 
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the samples immersed into the solution for 60days show ASR gel produced around the surface of 
the glass bead as shown in Fig 7. As expected, the sample with pure water does not seem to have 
any ASR gel while alkali solution immersed sample has. From these figures of 1N, 2N and 4N, 
once ASR gel is produced, it begins to be diffused into pores by compensating the vacancy. 

Glass bead weight change 

In the same way, glass beads were also immersed in alkali solution. Fig. 8 shows the schematic 
diagram of weight loss measurement. 3 glass beads were put into the solution with the same set 
of concentration used for hydrated cement paste test and were taken out to check amount of 
weight loss periodically. Temperature of the test will increase from 50°C to 70°C and each 
solution has three glass beads. The results were plotted based on equation (2). 

 
initial

initial

100(%)
thn day

W W

W


   (2) 

 

Fig. 8 Schematic diagram of glass bead weight measurement 

 

Fig. 9 Result of glass bead weight loss test 

The result of a case with 50°C is shown in Fig. 9. The sample in pure water does not lose its 
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weight. It is seen that 2N and 4N solution samples have higher reactivity than 1N samples. 
However, the difference between 2N and 4N samples is hardly found because the normality of 
the 2 alkali solutions are high enough so that it can be beyond saturation point. So, it is needed to 
modify experimental set up by lowering concentration level and making an increment step finer. 
Fig. 10 shows the result of weight change with the other sets of solutions.  

 

Fig. 10 Result of weight loss test with lower range of concentrations 

As expected, the sample in pure water still does not lose its weight although tiny fluctuation is 
found due to experimental error. Of course, it is seen that higher alkali solution has higher 
reactivity with the glass beads. The test will be implemented with different temperatures and 
those results will be ultimately used to set the equation of activation condition as function of 
concentration and temperature 
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III.2.4 ASR Damage Evolution and Acoustic Nonlinearity Parameter 

In this work, the following tasks were performed through conducting a parametric analysis. 

1.    Physics-based models that correlate the ANLP to ASR damage 

2.    Physics-based models for ASR damage evolution 

Parametric analysis 

 The previously formulated and presented ASR-LDPM model is capable of replicating 
concrete damage due to ASR [Alnaggar 2013]. In the previous reports, the model was calibrated 
to replicate the expansions for small and large specimens. 

 While the Accelerated Mortar Bar Test (AMBT) specimens are tested in free expansion, real 
structural elements are in most cases experiencing ASR expansions under some case of stress or 
confinement. AMBT specifications don’t require any assessment for stress effects on expansion 
and as mentioned before they don’t require any strength testing. In this parametric analysis, the 
behavior of a mortar bar 50 × 50 × 100 mm ( 2 × 2 × 4 in) is investigated. The same previously 
identified parameters are used. The AMBT test is simulated and both expansions and ultrasonic 
measurement simulations are presented. Two expansion cases are simulated for the bar, one with 
free expansion and the second with 10 MPa axial compression load. In addition, the compressive 
strength reduction for both cases is investigated. As the specimen now is much shorter (only 100 
mm), two ultrasonic measurement locations are only feasible to avoid being close to the 
boundary, which were at the specimen center measuring in X-X direction and in Y-Y direction. 
The ANLP results of both directions are summed up and then normalized. 

 Figure 1a shows the different strain components of the volumetric expansion for the free 
expansion case, which is a unique feature of ASR-LDPM. The amount of ASR gel expansion 
estimated by the model is about 1 quarter of the total observed macroscopic expansion, leaving 3 
quarters for cracking. In case of the 10 MPa axial compressive load, the amount of cracking was 
slightly reduced as can be seen from fig. 1b. On the other hand, ASR-LDPM was able to capture 
the redirection of cracking under loading as shown in fig 1c, where the crack pattern for free 
expansion case is almost random with no preferential directions while the 10 MPa forced the 
closure of horizontal cracks, which redirected the cracks in vertical direction. Figure 1d shows 
the ANLP evolution change for both free expansion and 10 MPa load case, where the loaded case 
response had a higher average value of ANLP in the early stages up to 10 days, then it started to 
be less than the free case. In the beginning, the load prevents cracking in the horizontal direction 
and this redirects the crack only in the vertical direction which means that at the same time, the 
crack openings in case of free expansions are smaller compared to the ones in loaded case, 
because the loaded case has to show almost the same crack volume but only in vertical direction. 
But as cracks grow, the chance for more cracking increases in the case of free expansion and 
result in more clear cracks which can lead to this increase. This can also be related to the fact that 
in early expansions, the cracks are localized, but as cracking propagates more, they coalesce and 
thus the effect of directionality reduces. Figure 1e shows the evolution of average crack volume 
and ANLP for the free expansion case. Here the average crack evolution serve seems to connect 
the maximas of the ANLP evolution curve or in other words, the ANLP is slightly under 
estimating the cracking, especially in the early stages. Again, such an effect seems to vanish 
towards later stages where cracks are not isolated anymore. The loaded case is shown in fig. 1f, 
where now the average crack volume evolution curve seems to represent a lower minima for the 
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ANLP evolution curve, or the ANLP is slightly overestimating the average cracking and again, 
such error minimizes towards late expansion stages. For both cases, figs 1e and f show that the 
ANLP evolution correlates very well with cracking as already discussed in the previous report. 

 Now, on the damage side, the effect of bar expansion on compressive strength reduction was 
simulated by testing the bar in compression uniaxially at 2 day intervals. Strength reduction is 
shown in fig. 1g. As can be expected from comparing the amount of cracking for both free and 
loaded cases (fig. 1a and b) the difference in strength reduction is very small as the average 
cracking strains are very close. To compare with ANLP evolution, the compressive strength 
evolutions in fig. 1g were used to compute normalized strength reduction evolutions given by 
(fc′t − fc′0 )/( fc′14 − fc′0 ). Where fc’t is the compressive strength at time t, fc’0 is the original 
compressive strength before ASR effects (at day 0) and fc’14 is the compressive strength at time 
14 days. Figure 1h shows the correlation between compressive strength reduction and ANLP 
evolution for the free expansion case. Both almost coincide up to 4 days, then after that, the 
strength reduction seems to be above the ANLP evolution average line up to day 10. Finally, they 
come to agreement again towards the end. In fact, under uniaxial compression, horizontal cracks 
close up and transmit the compressive load and what really matter are vertical cracks (recall that 
horizontal cracks in /RC columns are usually considered safe that is why horizontal splices in 
columns are accepted). While this is the case for strength, both cracks contribute to the ANLP 
evolution, and this may cause this difference. To more emphasize this explanation, the loaded 
case strength reduction and ANLP evolution are shown in fig. 1i. It is clear that the correlation 
much better for the loaded case, that is because the preloading with 10 MPa closed the horizontal 
cracks pre- venting them from contributing to the ANLP evolution. This is a very important 
observation and should be considered in any ANLP correlation to the structural strength. As most 
structural components are under some type of loading, the strength reduction interpretation based 
on ANLP tested on free expansion should not be accurately reflective and it is much better to try 
mimicking the stress conditions of the structure when applying the ANLP testing. On the other 
hand, this shows also that the use of ANLP testing on the real structure, can give realistic 
evolution of its strength reduction. 
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Figure 4: Parametric analysis specimens results for a) Different expansion components under 
free expansion. b) Different expansion components under 10 MPa axial loading. c) Crack 
patterns at 14 days in case of free expansion and 10 MPa axial loading. d) Simulated change in 
ANLP in case of free expansion and 10 MPa axial loading. e) ANLP evolution and average crack 
volume under free expansion. f) ANLP evolution and average crack volume under 10 MPa axial 
loading. g) Compressive strength evolution under free expansion and 10 MPa axial loading. h) 
ANLP evolution and compressive strength reduction under free expansion, and i) ANLP 
evolution and compressive strength reduction under 10 MPa axial loading. 
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III.2.5 Modeling ASR Gel Diffusion in Cement Pasts 

Introduction 

 One purpose of present model is simulating, in a continuum constitutive model, the pressure 
of ASR gel extruded into pores of cement mortar as the ASR gel mass increasing as a function of 
time. To describe the production of the ASR gel in the mineral aggregate, the classical model of 
Bazant and Stefens (2000) is adopted. This model is considered as a given input, which predicts 
the gel mass extruded into the adjacent pores and into cracks developing in the matrix, as a 
function of time t.  

     As a result of equilibrating ASR gel pressure in a two-phase medium, the volumetric 
tensile stress also varies. The two-phase equilibrium equation relating volumetric stress ߪ௏	and 
pore pressure p has the form: 

																																																					ሺ1 െ ݊ሻߪ௏ െ ݌݊ ൌ ܵ௏																																																					ሺ1ሻ  

ܵ௏ = the total volumetric stress of element; n = porosity. If we consider that, e.g.,  the 
expanding element is restrained by an elastic frame of stiffness constant C, we simply have: 

																																																													ܵ௏ ൌ  ሺ2ሻ																																																																				௏߳ܥ

߳௏ = volumetric strain. If there is no restraint, then C = 0, which gives ܵ௏=0. 

To reveal the main qualitative aspects of the problem, the one-dimensional problem of 
volumetric expansion is considered first. Some of the results for this case are summarized in the 
following. 

Capability of model to simulate ASR gel pressure extruded into the pores of cement mortar 
surrounding the aggregate 

 The following figures show evolution of pressure p in the gel and the volumetric tensile 
stress in the solid phase cause by extruded gel mass increasing in time. Note the differences in 
stable evolution of post peak damage. 

 

Fig.1 Stress-strain curve of unconfined material element 
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Fig2.  Stress-strain curves of material element confined by soft elastic spring (C=1000 Mpa) 

Fig3-
Stress-strain curves of material element confined by stiff elastic spring (C=20000 MPa) 

 

Discussion 

 As it can be seen in the Fig. 1, the present model can give qualitatively realistic evolutions of 
stress and strain both for prepeak hardening and postpeak softening. It is also obvious that a 
stable algorithm for postpeak damage has been achieved. 

Fig. 2 and Fig. 3 show the effect of confinement. As it can be seen in these figures, by increasing 
the stiffness of confinement, the ASR gel pressure increases and the strain decreases. It should be 
noted that all the foregoing figures correspond to the same gel mass, but the maximum strains are 
very different. Therefore, it can be concluded, upon increasing the confinement, the gel cannot 
accommodate the gel simply by pore volume dilations and that, instead, the pressure increases. 

Effect of freely accessible cracks 

 Expansion of ASR gel can be partly accommodated by its expulsion into the capillary pores 
in the hardened cement paste located very near the surface of the particle and small cracks in the 
particles. As long as these capillary pores are filling, no pressure gets induced in the gel, and the 
gel undergoes free expansion. Therefore, this freely accessible volume ଴ܸ affects the starting 
time of ASR induced pressure. The following curves depict the effect of ଴ܸ. 
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Fig4-stress - strain curve for ଴ܸ	(for small volume of freely accessible cracks) 

Fig 5-stress - strain curve for 2.5 ଴ܸ	(for large volume of freely accessible cracks) 

Discussion 

 As it can be seen in the Fig. 4 and Fig. 5 this simply accessible volume has strong effect not 
only on the time when pressure starts to rise but also in the final strain. As it can be seen in above 
figures, for an element with a larger ଴ܸ, the final strain in smaller. For the above cases, the final 
strain drops approximately from .007 to .003 when the easily accessible volume increases from 
଴ܸ to 2.5 ଴ܸ. 

Effect of porosity  

 As it is expected porosity has big effect on ASR induced strain. It the gel can get 
accommodate in pore volume, the crack expansion is smaller. Another important aspect is the 
permeability. Basically it is a function of porosity, but the porosity is not constant during the 
process. For evaluating the porosity effect, the following state equation is considered: 

																																												߳௏ ൌ ሺ1 െ ݊଴ሻ߳ௌ ൅ ሺ݊ െ ݊଴ሻ																																																																	ሺ3ሻ 

߳௏ is the volumetric strain of element,  ߳ௌ is volumetric strain of solid phase, ݊଴ is the initial 
porosity, n is time dependent porosity. 

 The following curves depict the effect of porosity on the strain evolution for the same gel 
mass evolution. 
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Fig 6- Stress- strain curve for ݊଴=0.3 

 

Fig 7- stress-strain curve for ݊଴=0.1 

 

Discussion 

 As Fig. 6 and Fig. 7 show, the initial porosity has a strong effect on the final strain. In the 
above cases, the final strain reduces approximately from 0.037 to 0.008 when the initial porosity 
increases from 0.1 to 0.3.  Therefore, one can expect more ASR induced cracking in low 
porosity concretes. 
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III.2.6 ASR Activation Energy and Rate of Reaction 

Introduction of Activation Energy Calculation  

Activation energy is the energy which is required to start the chemical reaction. Therefore, it 
can represent reactivity of chemical reaction. To study reactivity of ASR, in this quarter, glass 
ball immersion tests in alkali solution were conducted taking into account the effects of 
temperature, concentration and time. Finally, the activation energy is obtained by plotting Ln 
(rate constant) with respect to 1/temperature. The slope of this graph is equal to aE /R where R 

is the universal gas constant.   

 

Proposed method to calculate Activation Energy  

To achieve the goals, one needs to have 4 batches of 3 glass beads as shown in Fig. 1. Each 
batch is filled with pure water, 0.5N, 1N and 1.5N NaOH solution respectively. The tests are 
conducted at 50 ℃, 60 ℃ and 70 ℃. The beads in each concentration are picked out every 
2days to measure their weight. From weight measurement, radius change of a glass ball is plotted, 
representing rate of reaction. 

 
Fig. 1 Schematic diagram of glass ball weight measurement 

The determination of the ASR activation energy ( aE ) of a glass ball is accomplished through a 

series of steps. First, determine rate constant k from weight loss measurement. Since the weight 
measurement results are affected by its initial size, radius decrease of glass ball which does not 
depend on its original size is obtained from weight measurement test. Fig. 2 shows the schematic 
diagram of radius decrease and following equations shows the procedure of obtaining rate 
constant.  
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Fig. 2 Radius decrease of a glass ball by ASR 

 

Initial weight and the weight on n-th day are expressed as  
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: Weight of the glass beads
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Secondly, according to the Arrhenius equation, rate constant is expressed as  
/( ) aE RTk Ae   

Taking the natural logarithm of Arrhenius’ equation yields 

1
ln( ) ln( )


 aE

k A
R T

 

If ln(k) is plotted with respect 1/T, the slope is 
 aE

R
 as shown in Fig. 3. As a result, ASR 

activation energy of a glass ball is determined. 



NEUP CFP-12-3736 Final Report   11/30/2015 

 

118 
 

 
Fig. 3 Concept of activation energy calculation from the graph 

 

Results  

Fig. 4 shows the %radius change of a glass ball immersed in the different test solutions. It is 
seen that rate of ASR increases as the alkalinity of test solutions, temperature and time go up. 
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(b) 

(c) 

Fig. 4 %Radius Change (a) at 50°C, (b) 60°C and (c) 70°C 

 

‐0.05%

0.00%

0.05%

0.10%

0.15%

0.20%

0.25%

0 2 4 6 8 10

%
R
ad

iu
s 
C
h
an

ge

Time [days]

60°C

PW

0.5N

1N

1.5N

0.00%

0.10%

0.20%

0.30%

0.40%

0.50%

0.60%

0.70%

0 2 4 6 8 10

%
R
ad

iu
s 
C
h
an

ge

Time [days]

70°C

PW

0.5N

1N

1.5N



NEUP CFP-12-3736 Final Report   11/30/2015 

 

120 
 

Fig. 5 ASR Rate Constant of a glass ball 

In Fig. 5, ASR rate constant of a glass ball is shown. 
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Fig. 6 Activation Energy calculation from the slope 

The slope of the 3 data points is obtained by linear regression as shown in Fig. 6. Therefore, 
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ASR activation energy 70.14 /aE kJ mol  

This result will be used to understand the characteristics of samples with controlled ASR degree. 



NEUP CFP-12-3736 Final Report   11/30/2015 

 

122 
 

Linear Ultrasonic Meausrements 
Introduction of ultrasonic wave measurement  

 It is assumed that if characteristics of concrete sample change with increase of gel and crack 
density, UT results should reflect its property change. Wave speed and attenuation coefficient are 
measured and compared with weight variation. 

Experiment preparation  

 Four batches of different concentration solution were prepared which vary from 0N to 1.5N 
where 1N indicates 40g of NaOH per a liter of pure water. Prepared 6 samples were put into the 
batches. 6 samples were divided by two categories; 3 samples have the glass ball in its body and 
the other 3 do not have. Finally, 24 samples in total were immersed in the solutions and their 

weight changes were monitored every two days. 70°C was chosen. For the ultrasound test, 
through transmission test was used for wave speed calculation and pulse-echo method was 
conducted for attenuation coefficient measurement with 0.5MHz. 

Results  
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(b) 

 

(c) 

Fig. 7 Result of (a) %weight change, (b) Attenuation coefficient and (c) Wave velocity in pure water 

 

 The obtained attenuation coefficient is larger than the attenuation of normal Cement paste 
matrix 0.0085/mm 

 Weight change of samples in pure water varies between 0.07% and 0.18% that is a lot 
smaller than one in alkali solution. 

 Wave speed of sample without a glass ball(PW) is more or less than 4396.6m/sec and one 
with a glass ball(PW-G) is about 4413.7m/sec 

 It is hard to find clear correlation between each of results. 
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(c) 

Fig. 8 Result of (a) %weight change, (b) Attenuation coefficient and (c) Wave velocity in 0.5N solution 

 

 From the wave velocity and attenuation coefficient graph, it is seen that wave velocity and 
attenuation coefficient of 0.5N have similar trend (when one increased, the other one has 
increasing trend) while those of 0.5N-G do not have. 

 However, it does not make sense since higher attenuation coefficient should cause slower 
wave propagation. It is hard to find weight change effect to wave velocity and attenuation 
coefficient  
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(b) 

 

(c) 

Fig. 9 Result of (a) %weight change, (b) Attenuation coefficient and (c) Wave velocity in 1N solution 

 

 From 21st day to 27th day, the sample lost its weight more than other days. 

However, 1N sample does not have wave velocity and attenuation coefficient change as big as its 
weight change. 

 It is seen that once the sample is fully saturated with water, its additional weight change due 
to the ion diffusion does not directly affect its wave velocity and attenuation coefficient  

1N and 1N-G samples show that when wave velocity increases, attenuation coefficient also 
increases  
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(c) 

Fig. 10 Result of (a) %weight change, (b) Attenuation coefficient and (c) Wave velocity in 1.5N solution 

 

 1.5N and 1.5N-G sample have the similar pattern of weight change. It is hardly found that the 
sample with a glass ball gains more weight than one without a glass ball as alkali-silica gel 
swells by absorbing water. 

 According to above graphs, it is concluded that conventional linear UT has not provided 
enough sensitivity toward property change of sample. As a result, nonlinear ultrasound 
measurement will be intensively conducted. 
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III.2.7 Constitutive Model for Continuum Analysis for ASR Damage in Concrete with 
Diffusion of Compressible Gel into Pores 

 

Introduction 

 The excessive expansion and disintegration of some concrete made of cements of relatively 
high alkali content and of certain silica-containing aggregates can be explained by the so-called 
alkali-silica reaction (ASR). The ASR produces a soft viscous substance called the ASR gel, 
which has been observed to appear in pop-outs or to exude from cracks in concrete structures. 

 The eigenstrain caused by the alkali-silica reaction (ASR) is different from the thermal 
eigenstrain or shrinkage eigenstrain. The latter is simply additive to the stress-induced 
deformation and causes (or is assumed to cause) no damage to the solid. The ASR gel expands 
the pores and microcracks within the material and generates in the pores and microcracks fluid 
pressure p, which leads to material damage. It is actually an eigenstrain on a sub-scale of the 
material. For a porous solid with pressurized fluid in the pores, two different theories are well 
established: 1) Biot's (or Biot-Fillunger's) two-phase medium theory, and 2) Terzaghi's effective 
stress theory. 

 For three decades, these two theories were thought to be in conflict and were the subject of 
passionate polemics. One difference was that the latter assumed porosity n < 1 and the former n 
= 1 (for uplift in dam safety analysis). Another was that the elastic cross-stiffness between the 
solid and fluid has been missing from the latter. Today, however, it is clear that both are valid 
but have different applicability. The former applies to elastic or viscoelastic deformation of the 
porous medium, while the latter applies to failure and is an essential concept in soil mechanics. 

 This work explores a formulation that is an adaptation and combination of both (e.g., n 
increases, up to 1). The equality of macroscopic smeared-out deformation of both the solid and 
fluid phases is the same as in Biot's theory, but a major difference from Biot's theory is that the 
growth of fluid mass precludes applying the condition of equal strain in both phases. The model 
presented here should be applicable to any constitutive model for tensile softening damage but is 
here intended mainly for microplane model M7 (Caner and Bažant 2013). 

 
ASR gel mass calculation 

One purpose of present model is simulating the ASR gel pressure extruded into the porous 
phase (pores of cement mortar) when ASR gel mass increasing as a function of time. To describe 
the production of the ASR gel in the mineral aggregate, the model in Ref. [1] is adopted. This 
model is considered as a given input, which predicts the gel mass extruded into the adjacent 
pores and developing cracks in the matrix, as a function of time t.  Fig.11 shows a sample result 
for the extruded gel mass for one spherical aggregate. The amount of extruded gel is depend on 
the diameter of the sphere; in this special case diameter assumed to be 20 mm.  As it can be 
seen in this figure, the extruded gel mass is increasing function of time until the reaction front 
reaches the center of the aggregate (full reaction). After full reaction of the aggregate, extruded 
gel mass assumed to be constant. 
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Fig. 11- Mass of extruded gel-time for one aggregate 

 
 

 
ASR gel pressure evolution 

Three different increments should be considered for ASR gel in each step. First increment is 
because of gel mass increment. Simultaneous gel mass increment can be accommodated only by 
elastic compression of the gel. This contribution can be formulated as following: 

݌݀ ൌ ߢ
ܯ݀
ܯ

 

Where κ is the bulk modulus of ASR gel, and M is the mass of ASR gel. 
 
Second contribution is because of diffusion of ASR gel When Gel Mass and Strain Are Constant. 
For calculating this pressure increment Darcy equation is used: 

ݒ ൌ  ݌׏ܾ

Where v is the velocity and ׏  denotes the gradient and b = Darcy permeability 

(dimension	݉
ଷݏ

݇݃ൗ ) 

In detailed analysis, one could now proceed to the point-wise differential equation for the 
diffusion in coordinate x. However, in view of all the uncertainties, it should suffice to replace v 
with the velocity dx/dt of the diffusion front at distance x from the aggregate surface, and the 
pressure gradient with the average pressure gradient /p p x   .This leads to the simplified 
Darcy diffusion equation: 

ݔ݀
ݐ݀

ൌ ܾ
݌
ݔ

 

By considering simplified Darcy equation and compressibility of ASR gel, the following 
equation can be derived: 
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݌݀
ߢ
൅
݌
ߟ
ݐ݀ ൌ 0 

Where η is the effective viscosity.  
 
 
Last contribution in pressure increment is because of the volumetric strain. By considering equal 
volumetric strain in solid part and porous part, this contribution can be calculated as following: 

݌݀ ൌ െߢ	ߝ݀௩ 

Where ݀ߝ௩ is volumetric strain increment. 
 
Combining all the three pressure increments, the total pressure increment can be found as the 
following: 

݌݀ ൌ ߢ	 ൬
ܯ݀
ܯ

െ
݌
ߟ
ݐ݀ െ  ௩൰ߝ݀	

 
 
 
 

Equilibrium equations for two-phase solid-fluid continuum 

The material with expanding gel is considered as a two-phase solid-fluid continuum with 
variable fluid fraction. Equilibrium between gel pressure p in the pores and the volumetric stress 
 :௩ in the three-dimensional solid requires thatߪ

ܵ௏ ൌ ሺ1 െ ݊଴ሻߪ௏ െ ݊଴݌ 

௜ܵ௝ ൌ ௜௝ߪ െ ሺߪ௏ ൅  ௜௝ߜ݊଴	ሻ݌

Here ߜ௜௝= Kronecker delta (unit tensor);	 ௜ܵ௝, ܵ௏ are the total stresses in the two-phase 
continuum and the total volumetric stress, which are used to calculate the nodal forces in an 
explicit finite element program (note that p is positive for compression, ߪ௏ for tension). 

 
Variation of Permeability and Effective Porosity 

The permeability, b, is surely not constant. For	ܯ ൏  ଴, the effective permeability is very highܯ
because the gel is filling bigger pores next to the ITZ. Later, the gel is forced under pressure into 
tighter and tighter pores. Thus the effective permeability b must sharply decrease with distance x 
to the diffusion front, or with M. Not being aware of any applicable characteristic length, we 
may logically assume that b decreases with M as a self-similar function, which is a power 
function; i.e., 

ܯ		ݎ݋݂ ൐ ܾ								଴ܯ ൌ ܾ଴ሺ
ܯ
଴ܯ
ሻି௦ 

where s; b0 are empirical constant (both ≥ 0). Probably s >> 1, which reflects the fact that the 
very fine pores located farther from the aggregate piece beyond the ITZ are orders of magnitude 
harder to fill than the big pores in the ITZ. 
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According to the preceding simplified formulation, the gel pressure would be independent of the 
strains ߝ௜௝ in concrete. This is probably accurate enough only before the strength limit of 
concrete is reached. But once the ASR causes postpeak softening damage with large inelastic 
strain, microcracks will develop and serve as conduits greatly facilitating the flow of gel. This 
must be reflected in the increase of permeability, which may be assumed to depend on the 
inelastic volumetric strain: 

"௩ߝ ൌ ௩ߝ െ
௩ߪ
ܭ3

 

Because, with increasing ߝ௩"  , the continuity of cracks is likely to increase, b ought to be an 
increasing function of ߝ௩"  . Combining the effects of pore tightening and crack widening, we 
may write: 

ܯ		ݎ݋݂ ൏ ܾ								଴ܯ ൌ 	 ܾ଴ 

ܯ		ݎ݋݂ ൐ ܾ								଴ܯ ൌ ܾ଴ሺ
ܯ
଴ܯ
ሻି௦ ൅ ܾଵሺ

"௩ߝ

௣ߝ
ሻଶ 

where s;	ܾ଴ ;  ܾଵ= empirical constants. 
 
Results of one dimensional simulation 

(1) Stress-strain curves 

Fig. 12 depicts a sample result of finite element simulation for unconfined condition. As it can 
be seen in this figure this model can capture the evaluation of stress and pressure very good. 
Also, as it can be seen in this figure, this model satisfy equilibrium equation greatly. Fig.13 
shows the same result for confined condition, where the element is confined from all directions 
with elastic (spring) confinement. In this special case the stiffness of confinement assumed to be 
1000 Mpa. As it can be seen in this figure after reaching the peak tensile strength of concrete, 
stress in solid part decreasing, but pressure is increasing. This behavior again is in complete 
agreement with equilibrium equation. 

 
Fig. 12-Stress-strain curve of unconfined material element 
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Fig. 13-Stress-strain curve of confined material element (C=1000 Mpa) 

 
 
(2) Effect of bulk modulus 

One important issue that should be study is the bulk modulus of the gel. This property of the gel 
is not completely recognized, and there is some conflicts about this property. Fig. 14 illustrates 
how important is this property.  
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Fig. 14- Pressure- strain curves for different bulk moduli 

  
 
As it can be seen in these figures, bulk modulus of the gel is significantly important in results. By 
increasing the bulk modulus, pressure increment increases. Therefore, for the same amount of 
extruded gel strain will increases more.  
 
(3) Effect of effective Darcy coefficient 

Another important parameter that should be calculated is Darcy coefficient. In order to find 
reasonable order for this parameter, it assumed the permeability of the gel is in the same order of 
concrete. In this study effective Darcy coefficient defines as following: 

തܾ ൌ ܾ ቀ6
஽ݒ
ܦ
ቁ
ଶ
 

In above equation, b is Darcy coefficient and തܾ is the effective Darcy coefficient; ݒ஽ is volume 
fraction of aggregates of size D.  
Fig. 15 depicts the effect of this value in finite results. At first glimpse, it may perceive this 
parameter is not that important, and it will not change the results that much, but it should be 
considered that the range of variation of this parameter is expansive. Therefore, this parameter is 
so important. 
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Fig. 15-Pressure- strain curve for different Darcy effective coefficients 

 
 
Results for 3D simulation by using Microplane (M7) model  

In this section Microplane model used as constitutive equation for solid part. In order to use this 
model, a simple finite element model considered. Fig.16 illustrate the considered model.  

 

 
Fig. 16- Finite element model 

 

ASR expansion applied to this model and evolutions of pressure and stress was calculated. Fig. 
17 depicts the evolution of stress and Fig.18 shows the same for pressure. This model is for an 
unconfined condition and from equilibrium equation it expected these two figures be scaled of 
each other. As it can be seen in these figures, the results satisfy our expectation greatly, and these 
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two figures are scaled of each other. In this specific case porosity (n) considered equal to 0.1, 
thus from equilibrium equation pressure should be 9 times of stress, and it is. 

 

 
Fig. 17- Stress- strain curve 

 

 
Fig. 18- Pressure-strain curve 
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III.2.8 Effects of Moisture on Ultrasound Propagation in Cement Mortar  

Introduction   

Alkaline-silica reaction (ASR) is a major chemical degradation mechanism in concrete. In a 
humid environment, concrete may absorb moisture from the surrounding environment. As the 
absorbed moisture diffuses through the concrete, it dissolves the free alkaline ions in the cement 
and transports them to the aggregates. These alkaline ions then react with the amorphous silica in 
the aggregate. Such reaction produces a gel called ASR gel. The ASR gel expands its volume as 
it imbibes more water. Such volumetric expansion of the ASR gel induces large internal pressure, 
which may then cause microcracking of the concrete. For safe operation of concrete structures, 
nondestructive evaluation (NDE) techniques are needed to monitor and characterize ASR 
damage. 

Ultrasound has been used extensively for NDE of cement-based materials [1-4]. Most of these 
applications are based on linear ultrasonic methods. In recent years, nonlinear ultrasonic 
techniques have also been developed [5-7]. A major challenge in using ultrasonic NDE methods 
for chemical degradation such as ASR is how to quantify the degree of damage in the early 
stages. To this end, it is critical to develop a fundamental understanding of how ultrasonic wave 
propagation is affected by the presence of moisture, gel and microcracks.  

 As a first step towards quantifying the relationship between ultrasonic measurements and 
chemical degradations, this study experimentally investigates the effects of moisture on the 
ultrasonic phase velocity and attenuation in cement mortar samples. 

 

Sample Preparation  

Four cement mortar cubic samples of 2X2X2 inches were made following the procedures 
described by AASHTO T303 [8]. The type I cement (potential Bogue composition 46.11% C3S, 
22.93% C2S, 8.52% C3A and 9.59% C4AF and 0.83% Na2Oeq) and sorted lime stone sand were 
used. Particle size distribution of the sand is given in Table 1. The water/cement ratio used is 0.5 
and the sand/cement ratio is 2.25. After demolding, the samples were submerged in tap water at 
80°C (176 °F) for 24 hours to cure.  

TABLE 1. Sand proportion added to cement [8] 

Sieve Size 
Weight, % 

Passing Retained on 

4.75 mm (No. 4) 2.36 mm (No. 8) 10 

2.36 mm (No. 8) 1.18 mm (No. 16) 25 

1.18 mm (No. 16) 600 µm (No. 30) 25 

600 µm (No. 30) 300 µm (No. 50) 25 

300 µm (No. 50) 150 µm (No. 100) 15 

Moisture Content Measurement 
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Water content measurements were carried out by measuring the weight change of the samples 
under drying conditions. Four samples were used in each measurement, and the reported data are 
the average of results from these four samples. The first weight measurement was taken 
immediately after the 24 hr curing in 80°C tap water. The samples were then placed in a drying 
oven set at 80°C until the samples were fully dried. During this drying process, weight 
measurements were taken periodically. The moisture contents is then computed using the 
standard formula, 

     
weight(moist) - weight(dry)

water content [%]
weight(dry)

100                      (1) 

The water content so measured is plotted in Fig. I-1(a).   

To investigate whether the moisture absorption and desorption are reversible, the fully dried 
samples were again submerged in tap water at 80°C for 2 days. After that, the samples were 
again placed in a drying oven set at 80°C until the samples were fully dried again. The weight 
measurements were taken again periodically during this second drying period. The moisture 
content so measured is plotted in Fig. I-1(b).  

The similarity between Figs. I-1(a) and 1(b) seems to indicate that for samples well cured 
during the initial hydration process, additional moisture absorption and desorption are almost 
fully reversible. 

 

(a) (b) 

FIGURE I-9. (a) Moisture content during the first drying cycle after the samples were cured in 80°C tap water for 
24 hours, (b) Moisture content during the second drying cycle after the samples were submerged in 80°C tap water 
for 2 days.  

 

Ultrasonic wave measurement  

Ultrasonic tests were conducted to measure the ultrasonic phase velocity and attenuation in 
the cement mortar samples at different levels of moisture content. The velocity was measured by 
carrying out through transmission tests as schematically illustrated in Fig. I-2(a). The attenuation 
was measured using a pulse-echo method as illustrated in Fig. I-2(b), where a diplexer was used 
to switch the transducer from transmitter mode to receiver mode. In both tests, the incident wave 
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consists of a 2-cycle tone burst centered at 250 kHz. High-vacuum grease was used as a couplant 
to attach the transducers to the mortar samples. For repeatability, measurements on each sample 
at each moisture content were repeated three times by completely detaching and re-attaching the 
transducers. 

(a) (b) 

FIGURE I-10.  Experiment setup for (a) phase velocity measurements and (b) attenuation coefficient 
measurements 

 

The phase velocity was obtained by measuring the time of flight between the transducer and 
receiver. Showing in Fig. I-3(a) is the wave form received by the receiver when the transducers 
are directly attached to each other face-to-face without the sample in between them. Showing in 
Fig. I-3(b) is a typical waveform received by the receiver when a sample is placed between the 
transducer and receiver as illustrated in Fig. I-2(a). The difference between the arrival times of 
the highest peak in Figs I-3(a) and 3(b), i.e., t2 – t1, gives the time of flight for the ultrasound to 
travel through the sample. Knowing the time of flight and the distance between the transducers, 
the wave speed is obtained. 

 

  

(a) (b) 

FIGURE I-11. Wave form received by the receiver when (a) the transmitter and receiver are placed face-to-face 
directly and (b) the transmitter and the receiver are placed on opposite sides of the sample as illustrated in Fig. I-2(a) 
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The wave speed so measured is plotted Fig. I-5 as a function of moisture content. Again, the 
results are the average values from four samples. It is seen that the wave speed increases almost 
linearly with increasing moisture content. However, the increase is so slight (< 2%) that it is 
almost negligible. Previous studies, e.g., [4], have shown that wave speed could increase by as 
much as 12% when a concrete sample is fully saturated with moisture. It is thus speculated that 
such increase in wave speed in concrete is probably caused by the moisture stored in the 
aggregate/cement interfaces, since our results show that wave speed in cement mortar is not 
much affected by moisture. 

To study the attenuation, the pulse-echo method as illustrated in Fig. I-2(b) was used. Shown 
in Fig. I-4 is a typical wave form received by the transducer, where the peaks with amplitude 
labeled 

1
A  and 

2
A  are, respectively, the first and second reflections from the far-side surface of 

the sample. The corresponding attenuation coefficient was then calculated from the following 
equation 

        
2

1

20
log( ) [ / ]

A
Attenuation Coefficient dB mm

d A
                         (2) 

where d is the propagation distance (twice of the sample length). 

 

FIGURE I-12. Example of reflected signal obtained by pulse-echo method 
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FIGUREI-13. Averaged wave velocity of all samples 

 

 
FIGURE I-14. Averaged attenuation coefficient of all samples 

The measured attenuation coefficient is plotted in Fig. I-6. The data presented here are the 
average measurement from four samples. It is seen that the attenuation coefficient increases 
significantly with increasing moisture content. At full saturation, the attenuation coefficient is up 
more than 20%. Intuitively, this increase in attenuation might be attributed to the additional 
friction between the free water in the pores and the surrounding solid phase (cement). 

 

Conclusions 

This research has investigated experimentally the effects of moisture on ultrasonic phase 
velocity and attenuation in cement mortar samples. Several conclusions can be drawn from this 
study. First, moisture absorption and desorption are almost fully reversible in fully cured cement 
mortar samples. Second, moisture has negligible effects on the ultrasonic phase velocity in 
cement mortar samples. Finally, ultrasonic attenuation in cement mortar is strongly influenced by 
moisture. At full moisture saturation, the attenuation coefficient is more than 20% higher. It is 
because the effect of energy dissipation by liquid is more than that of stiffening medium.   
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III.2.9 Constitutive Model for Continuum Analysis for ASR Damage in Concrete with 
Diffusion of Compressible Gel into Pores 

 

Introduction 

 The excessive expansion and disintegration of some concrete made of cements of a relatively 
high alkali content and of certain silica-containing aggregates can be explained by the so-called 
alkali-silica reaction (ASR). The ASR produces a soft viscous substance called the ASR gel, 
which has been observed to appear in pop-outs or to exude from cracks in concrete structures. 
The eigenstrain caused by the alcali-silica reaction (ASR) is different from the thermal 
eigenstrain or shrinkage eigenstrain. The latter is simply additive to the stress-induced 
deformation and causes (or is assumed to cause) no damage to the solid. The ASR gel expands 
the pores and microcracks within the material and generates in the pores and microcracks fluid 
pressure p, which leads to material damage. It is actually an eigenstrain on a sub-scale of the 
material. For a porous solid with pressurized fluid in the pores, two different theories are well 
established: 1) Biot's (or Biot-Fillunger's) two-phase medium theory, and 2) Terzaghi's effective 
stress theory. For three decades, these two theories were thought to be in conflict and were the 
subject of passionate polemics. One difference was that the latter assumed porosity n < 1 and the 
former n = 1 (for uplift in dam safety analysis). Another was that the elastic cross-stiffness 
between the solid and fluid has been missing from the latter. Today, however, it is clear that both 
are valid but have different applicability. The former applies to elastic or viscoelastic 
deformation of the porous medium, while the latter applies to failure and is an essential concept 
in soil mechanics. 
 This work explores a formulation that is an adaptation and combination of both (e.g., n 
increases, up to 1). The equality of macroscopic smeared-out deformation of both the solid and 
fluid phases is the same as in Biot's theory, but a major difference from Biot's theory is that the 
growth of fluid mass precludes applying the condition of equal strain in both phases. The model 
presented here should be applicable to any constitutive model for tensile softening damage but is 
here intended mainly for microplane model M7 (Caner and Bažant 2013). 
 
ASR gel mass calculation 

 One purpose of present model is simulating the ASR gel pressure extruded into the porous 
phase (pores of cement mortar) when ASR gel mass increasing as a function of time. To describe 
the production of the ASR gel in the mineral aggregate, the model in Ref. [1] is adopted. This 
model is considered as a given input, which predicts the gel mass extruded into the adjacent 
pores and developing cracks in the matrix, as a function of time t.  Fig.II-1 shows a sample 
result for the extruded gel mass for one spherical aggregate. The amount of extruded gel is 
depend on the diameter of the sphere; in this special case diameter assumed to be 20 mm.  As it 
can be seen in this figure, the extruded gel mass is increasing function of time until the reaction 
front reaches the center of the aggregate (full reaction). After full reaction of the aggregate, 
extruded gel mass assumed to be constant. 
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Figure II-15. Mass of extruded gel-time for one aggregate 

 
ASR gel pressure evolution 

 Three different increments should be considered for ASR gel in each step. First increment is 
because of gel mass increment. Simultaneous gel mass increment can be accommodated only by 
elastic compression of the gel. This contribution can be formulated as following: 

݌݀ ൌ ߢ
ܯ݀
ܯ

 

Where κ is the bulk modulus of ASR gel, and M is the mass of ASR gel. 
 
Second contribution is because of diffusion of ASR gel When Gel Mass and Strain Are Constant. 
For calculating this pressure increment Darcy equation is used: 

ݒ ൌ  ݌׏ܾ

Where v is the velocity and ׏  denotes the gradient and b = Darcy permeability 

(dimension	݉
ଷݏ

݇݃ൗ ) 

 In detailed analysis, one could now proceed to the point-wise differential equation for the 
diffusion in coordinate x. However, in view of all the uncertainties, it should suffice to replace v 
with the velocity dx/dt of the diffusion front at distance x from the aggregate surface, and the 

pressure gradient with the average pressure gradient /p p x   .This leads to the simplified 
Darcy diffusion equation: 

ݔ݀
ݐ݀

ൌ ܾ
݌
ݔ

 

By considering simplified Darcy equation and compressibility of ASR gel, the following 
equation can be derived: 

݌݀
ߢ
൅
݌
ߟ
ݐ݀ ൌ 0 

Where η is the effective viscosity.  
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Other pressure increment is because of the volumetric strain. By considering equal volumetric 
strain in solid part and porous part, this contribution can be calculated as following: 

݌݀ ൌ െߢ	ߝ݀௩ 
 The last contribution that should be considered is the gradual filling of the pores. At early 
stages of the reaction, gel extruded into small volume around the particle. While, after reaction 
progress, concrete starts to crack and gel can extrude to further pores. Also it seems logical to 
assume aggregate will not have significant strains during process. Therefore, the area near 
particle undergo more strain than average strain. By solving equilibrium equations, an average 
strain for the element will be calculated, that this strain should be magnified to find the real strain 
in the part that gel extruded in. Fig. II-2, depicts this phenomena.  
 
 
 
 
 
 
 
 
 
 

 
 

 
 

           
 This phenomena is mostly important after cracking, since almost all of inelastic strain is due to 
the part that gel extruded to and other parts are free of inelastic strain. 
Simple equation for this phenomena can be written as following: 
 

vdp Ade¢¢=-    

 
Algorithm for ASR Gel Expansion Damage in a Finite Element System 

 In each time step r 1 rt t t+D = -  , in each integration point of each finite element of an explicit 
finite element program, the values of ߦ, ,	ߦ∆ ߳௜௝	, ∆߳௜௝	 (i; j = 1; 2; 3) corresponding to the end of 
the time step known from the last run of the finite element program and from the calculation of 
gel mass increment. 
For unconditional numerical stability, pressure increment can be found analytically in each step. 
By solving pressure differential equation following equations will be derived: 
 

( )

1

dt

r r

V V

dp p q e q p

d dd
q A

dt dt dt

 
 





   
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Figure II-16. Gel extrusion pattern 



NEUP CFP-12-3736 Final Report   11/30/2015 

 

147 
 

Equilibrium equations for two-phase solid-fluid continuum 

 The material with expanding gel is considered as a two-phase solid-fluid continuum with 
variable fluid fraction. Equilibrium between gel pressure p in the pores and the volumetric stress 
 :௩ in the three-dimensional solid requires thatߪ

ܵ௏ ൌ ሺ1 െ ݊଴ሻߪ௏ െ ݊଴݌ 

௜ܵ௝ ൌ ௜௝ߪ െ ሺߪ௏ ൅  ௜௝ߜ݊଴	ሻ݌

Here ߜ௜௝= Kronecker delta (unit tensor);	 ௜ܵ௝, ܵ௏ are the total stresses in the two-phase 
continuum and the total volumetric stress, which are used to calculate the nodal forces in an 
explicit finite element program (note that p is positive for compression, ߪ௏ for tension). 
 
 
 
Variation of Permeability and Effective Porosity 

 The permeability, b, is surely not constant. For	ܯ ൏  ଴, the effective permeability is very highܯ
because the gel is filling bigger pores next to the ITZ. Later, the gel is forced under pressure into 
tighter and tighter pores. Thus the effective permeability b must sharply decrease with distance x 
to the diffusion front, or with M. Not being aware of any applicable characteristic length, we 
may logically assume that b decreases with M as a self-similar function, which is a power 
function; i.e., 

ܯ		ݎ݋݂ ൐ ܾ								଴ܯ ൌ ܾ଴ሺ
ܯ
଴ܯ
ሻି௦ 

where s; b0 are empirical constant (both ≥ 0). Probably s >> 1, which reflects the fact that the 
very fine pores located farther from the aggregate piece beyond the ITZ are orders of magnitude 
harder to fill than the big pores in the ITZ. 
According to the preceding simplified formulation, the gel pressure would be independent of the 
strains ߝ௜௝ in concrete. This is probably accurate enough only before the strength limit of 
concrete is reached. But once the ASR causes postpeak softening damage with large inelastic 
strain, microcracks will develop and serve as conduits greatly facilitating the flow of gel. This 
must be reflected in the increase of permeability, which may be assumed to depend on the 
inelastic volumetric strain: 

"௩ߝ ൌ ௩ߝ െ
௩ߪ
ܭ3

 

Because, with increasing ߝ௩"  , the continuity of cracks is likely to increase, b ought to be an 
increasing function of ߝ௩"  . Combining the effects of pore tightening and crack widening, we 
may write: 

ܯ		ݎ݋݂ ൏ ܾ								଴ܯ ൌ 	 ܾ଴ 

ܯ		ݎ݋݂ ൐ ܾ								଴ܯ ൌ ܾ଴ሺ
ܯ
଴ܯ
ሻି௦ ൅ ܾଵሺ

"௩ߝ

௣ߝ
ሻଶ 

where s;	ܾ଴ ;  ܾଵ= empirical constants. 
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Results of one dimensional simulation 
1) Stress-strain curves 

 Fig. II-2 depicts a sample result of finite element simulation for unconfined condition. As it can 
be seen in this figure this model can capture the evaluation of stress and pressure very good. 
Also, as it can be seen in this figure, this model satisfy equilibrium equation greatly. Fig. II-3 
shows the same result for confined condition, where the element is confined from all directions 
with elastic (spring) confinement. In this special case the stiffness of confinement assumed to be 
1000 Mpa. As it can be seen in this figure after reaching the peak tensile strength of concrete, 
stress in solid part decreasing, but pressure is increasing. This behavior again is in complete 
agreement with equilibrium equation. 

 
Figure II-17. Stress-strain curve of unconfined material element 

 

 
Figure II-18. Stress-strain curve of confined material element (C=1000 Mpa) 

 

 

2) Free and restrained ASR expansion 

 To verify the ability of the model to predict correctly ASR-induced expansion under different 
loading conditions, this section presents the simulation of experimental results obtained by 
Multon and Toutlemonde [26]. Experiments were performed using sealed cylindrical specimens 
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(240 mm length and 130 mm in diameter). Three different cases were considered: (1) free 
expansion; 2) restrained expansion by using a 3 mm and thick steel ring; and (3) restrained 
expansion by using a 5 mm thick steel ring. 
 

A) Unconfined condition 

 First, we consider free expansion test, without any external force and confinement. Fig. II-5 
shows the mesh shape for this condition. Fig. II- 6 depicts the axial strain for simulation and 
experiment one. This figure shows good agreement between the results. Fig. II-7 depicts results 
for the radial strain. Also, it can be seen that the radial strain is also in good agreement with the 
experiment.  

 
Figure II-19. Finite element mesh for unconfined condition 

 

 

Figure II-20- Axial strain for unconfined condition 
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Figure II-21- Radial strain for unconfined condition 
 

B) Confined condition for 3mm ring 

This time concrete cylinder confined with 3 mm ring. Fig. II-8 shows finite element mesh for this 
condition. 

   

Figure II-22. Finite element mesh 3mm steel ring confinement 
 

Fig. II- 9 and Fig. II-10 shows the results for this condition. As it can be seen results are in good 
agreement with experimental data. 
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Figure II-23. Axial strain for 3mm steel ring confinement case 
 

 

Figure II-24. Radial strain for 3mm steel ring confinement case 
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III.3 Report of the 3rd year 

III.3.1 Effects of Moisture on Ultrasound Propagation in Cement Mortar  

Introduction   

Alkaline-silica reaction (ASR) is a major chemical degradation mechanism in concrete. In a 
humid environment, concrete may absorb moisture from the surrounding environment. As the 
absorbed moisture diffuses through the concrete, it dissolves the free alkaline ions in the cement 
and transports them to the aggregates. These alkaline ions then react with the amorphous silica in 
the aggregate. Such reaction produces a gel called ASR gel. The ASR gel expands its volume as 
it imbibes more water. Such volumetric expansion of the ASR gel induces large internal pressure, 
which may then cause microcracking of the concrete. For safe operation of concrete structures, 
nondestructive evaluation (NDE) techniques are needed to monitor and characterize ASR 
damage. 

Ultrasound has been used extensively for NDE of cement-based materials [1-4]. Most of these 
applications are based on linear ultrasonic methods. In recent years, nonlinear ultrasonic 
techniques have also been developed [5-7]. A major challenge in using ultrasonic NDE methods 
for chemical degradation such as ASR is how to quantify the degree of damage in the early 
stages. To this end, it is critical to develop a fundamental understanding of how ultrasonic wave 
propagation is affected by the presence of moisture, gel and microcracks. 

When moisture enters a mortar bar, free water diffuses through the entire bar with transporting 
free alkaline ions. So the governing equation of moisture diffusion can be expressed in terms of 
water concentration. Since diffusion of moisture is driven by the concentration gradient of free 
water, the governing equation is  

                             )( CD
dt

dC
                               (1)  

where C= water concentration, t= time and D= diffusion coefficient.  

In this quarter, numerically obtained moisture diffusion coefficient is presented and its 
concentration-independency has been checked by comparing ABAQUS simulation results with 
experimentally obtained moisture diffusion results in mortar bars. Moreover, diffusivity of 
alkaline solution is compared with that of pure water.    

 

Sample Preparation  

Nine cement mortar cubic samples of 2X2X2 inches were made following the procedures 
described by AASHTO T303 [8]. The type I cement (potential Bogue composition 46.11% C3S, 
22.93% C2S, 8.52% C3A and 9.59% C4AF and 0.83% Na2Oeq) and sorted lime stone sand were 
used. Particle size distribution of the sand is given in Table 1. The water/cement ratio used is 0.5 
and the sand/cement ratio is 2.25. After demolding, the samples were submerged in tap water at 
ambient room temperature for 14days to cure.  



NEUP CFP-12-3736 Final Report   11/30/2015 

 

153 
 

TABLE 1. Sand proportion added to cement [8] 

Sieve Size 
Weight, % 

Passing Retained on 

4.75 mm (No. 4) 2.36 mm (No. 8) 10 

2.36 mm (No. 8) 1.18 mm (No. 16) 25 

1.18 mm (No. 16) 600 µm (No. 30) 25 

600 µm (No. 30) 300 µm (No. 50) 25 

300 µm (No. 50) 150 µm (No. 100) 15 

 

ABAQUS simulation 

This analysis is to simulate the diffusion of test solution into the mortar cube and calculate its 
concentration at each time. In ABQUS module, heat transfer has been used since its governing 
equation is mathematically identical. The “temperature” in this analysis is equivalent to 
concentration of diffusion equation. In the equation (1), Where C is concentration in mass 
diffusion and temperature in heat transfer. D is thermal diffusivity in heat transfer analysis and 
diffusivity in mass diffusion. The thermal conductivity we use in ABAQUS is not equivalent to 
thermal diffusivity but they are related by the formula:  

pc

k


                                    (2) 

where αis thermal diffusivity, k is the thermal conductivity used. pc is specific heat and ρ is 

density, Therefore, when we use heat transfer analysis to simulate mass diffusion in ABAQUS, 
we should convert thermal conductivity into diffusivity. For this simulation, density and specific 
heat were assigned to be one so that they are equal. 

 

Moisture Content Measurement 

After the 14days curing in tap water at room temperature (25°C), nine samples were then 
placed in a drying oven set at 80°C until the samples were fully dried. Moisture content 
measurements were carried out by measuring the weight change of the samples under water-
uptake conditions. Three samples over nine samples in total were submerged in pure water, 0.5N 
and 1N test solution respectively, and the reported data are the average of results from these 
three samples. The first weight measurement was taken when the samples were fully dried and 
weight measurements were taken periodically. The moisture contents is then computed using the 
standard formula, 

      Solution Uptake [%] = 100
)weight(dry

)weight(dry-st)weight(moi
                 (3) 
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The solution uptake measured is plotted in Fig. I-1.   

 

FIGURE I-25. Diffusion tests of three different solutions in the samples after fully dried in the drying oven at 80°C. 
 

To investigate diffusion coefficient of three different test solutions, weight of the samples 
were measured as shown in Fig. I-1 and it is found that higher alkaline solution diffuses more 
than the other lower alkalinity solutions. This is because gradient of alkaline ions concentration 
serves as additional driving force. With these experimental data, ABQUS diffusion simulation 
has been implemented.  

  

(a) (b) 

FIGURE I-2. (a) Uniform mesh of the mortar cube model (b) One frame of water diffusion process. 
 

39304 uniform elements have been generated and the maximum solution uptake data from the 
experiment has been used as a boundary condition. The solution diffusion model was running for 
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28 hours in the simulation. Each corresponding numerically obtained data points were compared 
with the data from the experiment to find an optimized diffusion coefficient which makes the 
minimum error. Coefficient of determination method was used in order to determine appropriate 
value as followings,  

    








i
i

i
ii

yy

fy
R

2

2

2

)(

)(
1                           (4) 

where iy = experimental data, if = numerical data and y = mean of experimental data 

In fig. I-3, sub figures of (a), (c) and (e) present the numerical data over the first 1.4 hours and 
the rest of figures show the results during the entire 28hours and it is seen that diffusion 
coefficient of D=130 smm /2  provides the best fit to the experiment results, having 0.12 R .  

 

(a)                                   (b) 

 

(c)                                 (d) 
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(e)                                 (f) 

FIGURE I-3. Diffusion Simulation of (a)&(b) pure water, (c)&(d) 0.5N and (e)&(f) 1N solution 
 
Conclusions 

This study has numerically obtained the diffusion coefficient of test solutions. Several 
conclusions can be drawn from this study. First, for 2 inch mortar cube at room temperature, test 
solution diffusion occurs as constant diffusivity. Second, higher alkalinity solution makes the 
sample absorb more solution than lower one. Finally, although the maximum weight gain varies 
versus alkalinity of each solution, the diffusivity is comparable. It is because water diffusion is 
dominant over the entire diffusion regardless of alkaline ions.  
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III.3.2 A Micromechanics Model for the Acoustic Nonlinearity Parameter in Solids with 
Distributed Microcracks 

 Although the precise mechanisms of ASR formation are still under intensive investigation, it 
is generally accepted that there are four stages in ASR damage development: (1) gel formation, 
(2) internal pressure buildup, (3) microcrack initiation, and (4) crack growth. In our earlier 
report, we have shown that microcracking is the main contributor for the acoustic nonlinearity 
measured in the nonlinear ultrasonic testing. So, in this task, we try to develop a 
micromechanics-based model to simulate the effects of microcracks on the propagating 
ultrasound. 

 The first task is to estimate the tensile and compressive elastic moduli of elastic solids 
containing randomly distributed microcracks. The models are based on Eshelby (dilute crack 
density) model and the self-consistent model. Both static and frequency dependent cases are 
considered. Numerical simulations using the finite element method are conducted to validate the 
model. The model predicts that tensile and compressive moduli are different. Wave attenuation is 
also predicted by the model.  

 

Fig. 3 Static compressive modulus versus crack density for plane strain case ( 0.5   ) . Solid 
lines are model predictions and symbols are from FEM. 
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Fig. 4 Static compressive modulus versus crack density for plane strain case ( 1.0   ) . Solid 
lines are model predictions and symbols are from FEM. 

 

Fig. 5 Attenuation versus crack density for plane strain case ( 0.2516  ). Solid lines are model 
predictions and symbols are from FEM. 
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Fig. 6 Attenuation versus frequency for plane strain case ( 0.0125c  ). Solid lines are model 
predictions and symbols are from FEM. 
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III.3.3 Mixing of Two Co-Directional Rayleigh Surface Waves in a Nonlinear Elastic 
Material 

 The mixing of two co-directional, initially monochromatic Rayleigh surface waves in an 
isotropic, homogeneous and nonlinear elastic solid is investigated using analytical, finite element 
method and experimental approaches. The analytical investigations show that while the 
horizontal velocity component can form a shock wave, the vertical velocity component can form 
a pulse independent of the specific ratios of the fundamental frequencies and amplitudes that are 
mixed. This analytical model is then used to simulate the development of the fundamentals, 
second harmonics, and the sum and difference frequency components over the propagation 
distance. The analytical model is further extended to include diffraction effects in the parabolic 
approximation. Finally, the frequency and amplitude ratios of the fundamentals are identified 
which provide maximum amplitudes of the second harmonics as well as of the sum and 
difference frequency components, to help guide effective material characterization; this approach 
should make it possible to measure the acoustic nonlinearity of a solid not only with the second 
harmonics, but also with the sum and difference frequency components. Results of the analytical 
investigations are then confirmed using the finite element method and the experimental 
feasibility of the proposed technique is validated for an aluminum specimen. 

 

Vertical displacements related to different frequencies of the analytical (curves) and the FE 
model (symbols) at the stress free surface. The fundamental frequencies are chosen as 

5 MHza   and 2 MHzb  2. The excitation of the mixed longitudinal wave in the wedge 

is conducted with two sine signals at amplitudes of 15 × 10−10m. 
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Vertical displacements related to different frequencies of the analytical (curves) and the FE 
model (symbols) at the stress free surface. The fundamental frequencies are chosen as 

5 MHza   and 4 MHzb  2. The excitation of the mixed longitudinal wave in the wedge 

is conducted with two sine signals at amplitudes of 15 × 10−10m. 
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III.3.4 Constitutive Model for Continuum Analysis for ASR Damage 

 

Introduction 

ASR experiments usually are done in long periods (more than 400 days). Also, these experiments 
are done under loading, and these loads can be high (20 Mpa). Therefore, for sure creep will be 
important part of their deformation and it should be considered in the model. Since loads are 
high, creep and damage should be considered in coupled manner. Also, some experiments show 
humidity change during experiment. In order to consider this humidity change, shrinkage should 
be added to the model.  
In order to consider creep and shrinkage B3 model is applied. In order to find the stresses in each 
step from given strains, following steps are done. 
First, as we know strain can be found by using compliance function by the following equation. 

                         '(t) .J(t, t )e s=                             (1) 

From B3 model compliance function is given as 

    (2) 
in which q1 = instantaneous strain due to unit stress, C0(t, t′) = compliance function for basic 
creep (creep at constant moisture content and no moisture movement through the material), and 
Cd(t, t′, t0) = additional compliance function due to simultaneous drying. 
The total basic creep compliance is obtained by integrating as follows: 

                 (3) 
And drying creep compliance can be found as: 
 

(4) 
 
t′0 is the time at which drying and loading first act simultaneously; and 

                  (5) 
 
And q’s are constants that depend on the type of concrete. And they can be found from B3 
model. 
For considering shrinkage again B3 model is applied.  
 
Mean shrinkage strain in the cross section: 

                     (6) 
Time dependence: 

                                    (7) 
Humidity dependence: 
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Size dependence: 

      (8) 
where v/s = volume to surface ratio of the concrete member, D = 2v/s = effective cross-section 
thickness which coincides with the actual thickness in the case of a slab, kt is a factor  and ks is 
the cross- section shape factor. All of these factors can be found from B3 model.  
 
 
Rheologic Chains 
Rheologic models obtained by serial or parallel coupling of an elastic spring and a viscous 
dashpot are too simple to approximate viscoelastic behavior of real materials in a realistic 
manner. The deficiencies of such simple models are obvious: Maxwell model leads to a constant 
creep rate if the stress is kept constant, while the actual creep process slows down in time. Kelvin 
model cannot capture any instantaneous elastic strain and does not exhibit gradual relaxation of 
stress under constant strain. Each of these models has a certain intrinsic time scale, and on much 
shorter or much longer time scales does not behave as a truly viscoelastic model but degenerates 
either into a spring or into a dashpot. B3 model is in acceptance with kelvin chain. Therefore, in 
order to consider the problem as general, Kelvin aging chain will be considered.  
 
Aging Kelvin Chain 

 
For the Kelvin model, generalization to the case of aging is less straightforward, but still 
possible. Differential equation for the non-aging Kelvin model originates from the stress 
equivalence relation, ߪ ൌ ௘ߪ ൅  ௩. For an aging spring we cannot link the elastic stress to theߪ
current value of the elastic strain, and we must deal with their rates. Therefore, the stress 
equivalence relation must also be written in the rate form,	ߪሶ ൌ ሶ௘ߪ ൅  , so that the partial stress	ሶ௩ߪ
rates could be expressed in terms of the strain rate. The resulting differential equation is  

   (9) 
is then of the second order. It can be rewritten as 
 

    (10) 
Where 
 

 

 
 
D(t) is are age dependent moduli that can be found by using so called continuous retardation 
spectrum. For this purpose Widder’s formula is used.  
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For finding modulus by using retardation spectrum at least three times derivation of compliance 
function is needed. This can be done numerically or analytically. In this work this derivation has 
done analytically in order to be more reliable and exact.    

 
FIGURE II-26. Aging kelvin chain 

 
By defining  

                               (11) 
 
The differential equation will be simplified to, 

                          (12) 

Since creep experiments are long in time and in order to be able to use large step times without 
going to unstability, Exponential algorithm will be applied in order to solve analytically 
differential equation in each step. By using this method we can find stress increment at the end of 
each time step for long step times. The final equations are as following, 

                   (13) 
Where 

 

 
 

 
And at the end of each step internal variables can be updated by using the formula 
 

         (14) 
Then by having stresses and internal variables at the end of each step we can go to next step.  
 
 Figure II-2 shows the results for unit compressive load by using B3 model and using finite 
element simulation by different number of chains in each kelvin unit. The results are totally very 
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good and also by increasing number of chain it comes closer to B3 model. Results shows that 21 
chain gives almost exact results. 
 

 
FIGURE II-27. Strain-time for unit compressive load 

 
Figure II-3 shows the same results for the case that humidity is 75 percent. As it can be seen in 
this figure, also for this condition that we have drying creep results are in good agreement with 
B3 model in large interval of time. 
 

 
FIGURE II-28. Strain-time for unit compressive load and h=75% 

 
  
Figure II-4 shows the results for shrinkage. As it can be seen results are in good agreement. 
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FIGURE II-29. Shrinkage for h=75% 

 
 
Incorporation into Microplane Model 
 Until Now creep is considered without considering effect of damage. In order to model ASR 
reaction effect of damage should be considered and damage and creep should be considered 
coupled. In this study damage will be considered by using Microplane model. Thus, creep should 
be incorporated to this constitutive model.  
In Microplane Model M7, the constitutive law is formulated in terms of the stress and strain 
vectors on each microplane.  
On each microplane, the strain vector is decomposed into the volumetric strain, deviatoric strain, 
and shear strain. The trial stress can be found by changing young modulus by E” (found from 
creep calculation). Then this stress will be relaxed because of creep.  
The increments of the volumetric, deviatoric and shear stress components may be written as 
 

 

                       (15) 

 
 
 
In the next set up of figures results of simulation by considering creep without damage and creep 
coupled with damage will be compared. Figure II-5 shows the results for 0.1 Mpa compressive 
load. As it can be seen considering damage in this case doesn’t have effect. This result is cogent, 
since the considered load is low and damage can’t be expected.  
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FIGURE II-30. Strain-time for 0.1 Mpa pressure by considering damage and without damage 

 
. 
Figure II-6 and II-7 show the same results for higher loads. As if can be seen, by increasing the 
load damage comes to play and we should consider that.  

 
FIGURE II-31. Strain-time for 1 Mpa pressure by considering damage and without damage 

  
 
 

 
FIGURE II-32. Strain-time for 10 Mpa pressure by considering damage and without damage 
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III.3.5 Ultrasound Propagation in ASR Damaged Specimens  

Introduction   

Alkaline-silica reaction (ASR) is a major chemical degradation mechanism in concrete. In a 
humid environment, concrete may absorb moisture from the surrounding environment. As the 
absorbed moisture diffuses through the concrete, it dissolves the free alkaline ions in the cement 
and transports them to the aggregates. These alkaline ions then react with the amorphous silica in 
the aggregate. Such reaction produces a gel called ASR gel. The ASR gel expands its volume as 
it imbibes more water. Such volumetric expansion of the ASR gel induces large internal pressure, 
which may then cause microcracking of the concrete. For safe operation of concrete structures, 
nondestructive evaluation (NDE) techniques are needed to monitor and characterize ASR 
damage. 

Ultrasound has been used extensively for NDE of cement-based materials [1-4]. Most of these 
applications are based on linear ultrasonic methods. In recent years, nonlinear ultrasonic 
techniques have also been developed [5-7]. A major challenge in using ultrasonic NDE methods 
for chemical degradation such as ASR is how to quantify the degree of damage in the early 
stages.  

In this quarter, ASR damaged samples have been prepared for both volume expansion test and 
ultrasound measurements. To evaluate degree of early stage damage, the definition of nonlinear 
acoustic parameter for the method of mixing two longitudinal waves has been derived which can 
give information of nonlinearity of the specimens with lower frequency component of a 
longitudinal wave. The amplitude of this new wave is proportional to the acoustic nonlinear 
parameter which can then be obtained from the frequency spectrum of the newly generated 
longitudinal wave. Results of linear wave speed measurements for the prepared prisms will be 
shown.  
 
Sample Preparation  

Four plain concrete slabs were constructed and conditioned for the ASR portion of this project.  
An additional four small-scale matching prisms were cast with each slab specimen.  Specimen 
dimensions were 1219 x 914 x 203 mm (48 x 36 x 8 in.) for the slabs and 102 x 76 x 406 mm (4 
x 3 x 16 in.) for the matching prisms. ASR damage was characterized by expansion 
measurements for all specimens.  

Materials 
 
The materials used to create the reactive ASR specimens (ASR1, ASR2, and ASR3) included 
two reactive coarse aggregates from Wells, Maine (RCA1) and Bernalillo, New Mexico (RCA2), 
a highly-reactive fine aggregate from El Paso, Texas (RFA), and a Type I portland cement with a 
relatively high equivalent alkali content (Cement 1). Reactivity of all aggregates in this study 
was based on performance in the ASTM C1293 concrete prism test . Sodium hydroxide (NaOH) 
was added to the reactive mixtures to obtain a 1.25% equivalent alkali content, by mass of 
cement. The ASR control mixture (ASR0) consisted of one non-reactive coarse aggregate 
(NCA), a non-reactive fine aggregate (NFA), and a low-alkali Type II portland cement (Cement 
2). Both the NCA and NFA were acquired from a source in Calera, Alabama. The w/cm was 
0.50 for all mixtures. Relevant material properties for mixture proportioning are listed in Table I-
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1; more extensive data on the materials can be found in Appendix B. Some of the listed materials 
were also used in the freeze-thaw specimens. Mixture proportions for the ASR specimens are 
shown in Table I-2. 
 
Table I-1 Material properties for cements and aggregates for mixture proportioning. 

Material  Na2Oeq, %  Absorption Capacity, % 
Bulk Specific Gravity

  (Oven Dry) 

Cement 1  1.10  ‐ 
3.15

Cement 2  0.53  ‐  3.15

RCA1  ‐  0.38 
2.77

RCA2  ‐  0.60  2.64

NCA  ‐  0.70 
2.74

RFA  ‐  1.10  2.57

NFA  ‐  1.00 
2.70

 
Table I.2 Mixture proportions for ASR specimens. 

Material 

Quantity, kg/m3 (lb/yd3) 

ASR Reactive 
ASR Control 

Cement 1  420 (708)  ‐ 

Cement 2  ‐  420 (708) 

Water  210 (354)  210 (354) 

RCA1 (oven dry)  429 (723)  ‐ 

RCA2 (oven dry)  429 (723) 
‐ 

NCA (oven dry)  ‐ 
1095 (1845) 

RFA (oven dry)  818 (1379)  ‐ 

NFA (oven dry)  ‐  639 (1077) 

NaOH  1.63 (2.74)  ‐ 
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Figure I-1 Steel mold for ASR matching prims. 

Fabrication 
Three batches of concrete (A, B, and C) were required for each slab and its matching prisms. The 
batches were mixed and placed in rapid succession to avoid the formation of cold joints. Slabs 
were vibrated in two layers using an internal vibrator, and the sides of the formwork were tapped 
with a rubber mallet to ensure consolidation, particularly in the corners. Slump, unit weight, and 
air content were determined for each batch in accordance with ASTM C14 , ASTM C29 , and 
ASTM C231, respectively. Mixing temperatures were also recorded, and compressive strength 
tests were performed on 100 x 200 mm (4 x 8 in.) cylinders at 7 and 28 days following the 
guidelines of ASTM C39 for quality control. Values for these properties, including average 
compressive strength, for each batch are given in Table I-3. 
 

Table I-3 Fresh concrete properties and average compressive strength for each ASR batch. 

Batch 
Unit Weight, 

kg/m3 (lb/ft3) 

Slump, mm 

(in.) 

Air 

Content, % 

Mixing 

Temperature

, °C (°F) 

Compressive Strength, 

MPa (psi) 

7 Days  28 Days

ASR1         
 

A  2336 (145.8)  240 (9.5)  1.4 
22.0 (72)

30.6 (4440) 40.1 (5820) 

B  2336 (145.8)  220 (8.75)  2.1 
22.0 (72)

32.3 (4690) 41.9 (6080) 

C  2281 (142.4)  230 (9.0)  1.6 
22.0 (72)

28.6 (4150) 39.4 (5720) 

ASR2       
    

A  2342 (146.2)  215 (8.5)  2.0 
22.5 (73)

31.2 (4520) 40.6 (5890) 

B  2339 (146.0)  230 (9.0)  1.7 
22.5 (73)

29.2 (4240) 38.6 (5600) 

C  2336 (145.8)  215 (8.5)  2.0 
22.5 (73)

28.9 (4190) 38.1 (5520) 

ASR3       
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A  2350 (146.8)  205 (8.0)  1.7 
21.5 (71)

32.5 (4720) 40.3 (5840) 

B  2348 (146.6)  205 (8.0)  1.9 
21.0 (70)

31.4 (4550) 39.9 (5790) 

C  2332 (145.6)  215 (8.5)  1.9 
22.0 (72)

33.9 (4910) 39.7 (5760) 

ASR0       
    

A  2425 (151.4)  190 (7.5)  1.75 
21.5 (71)

37.6 (5450) 40.3 (5840) 

B  2409 (150.4)  215 (8.5)  0.8 
21.0 (70)

38.2 (5540) 45.1 (6540) 

C  2406 (150.2)  180 (7.0)  0.8  21.0 (70)
37.2 (5400) 43.1 (6250) 

 

Specimen 
Compressive Strength, MPa (psi) 

7 Days 28 Days 

ASR3 

A 

1 30.1 (4360) - 

2 33.8 (4900) 40.8 (5920) 

3 33.8 (4900) 39.7 (5760) 

B 

1 31.6 (4580) 40.1 (5820) 

2 32.0 (4640) 38.5 (5590) 

3 30.5 (4420) 41.1 (5960) 

C 

1 33.4 (4850) 37.6 (5450) 

2 34.0 (4930) 41.1 (5960) 

3 34.1 (4950) 40.5 (5880) 

ASR0 

A 

1 37.5 (5440) 30.8 (4470) 

2 38.1 (5520) 45.6 (6620) 

3 37.2 (5400) 44.3 (6430) 

B 

1 38.1 (5530) 45.4 (6590) 

2 38.8 (5630) 44.8 (6500) 

3 37.6 (5450) 45.0 (6530) 

C 

1 37.6 (5460) 44.1 (6400) 

2 37.0 (5370) 20.2 (2930) 

3 37.1 (5380) 42.1 (6100) 
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An epoxy resin was used to attach four DEMEC target discs to the top of each slab 500 mm 
(19.7 in) apart in a square pattern for expansion measurements. Three DEMEC discs were 
attached to each side of each ASR prism; one disc was centered with the other two discs spaced 
at 150 mm (5.9 in) from the center disc. A finished slab and its matching prisms are shown in 
Figs. I-2 and I-3, respectively. 

 

 
Figure I-2 A finished slab showing anchor bolts protruding from the sides (top) and DEMEC 
discs attached to the top surface in a square pattern (bottom). 
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Figure I-3 Finished matching ASR prisms with DEMEC discs attached to each side. 

Conditioning  
To induce ASR in the reactive slabs, temperature and relative humidity in the environmental 
chamber were maintained at 27°C (80.6°F) and 65%. This conditioning regime was less severe 
than standard accelerated laboratory tests; it was selected in order to prevent excessive 
expansions in the slabs because the aggregate combination had the potential to be extremely 
reactive. Temperature within the chamber was increased to 32°C (89.6°F) after taking readings 
on January 15, 2014 (Day 93) but was returned back to 27°C (80.6°F) after taking readings on 
January 29, 2014 (Day 107) because expansions in the slabs increased rapidly during that time. 
Slabs were draped with wet burlap and wrapped in plastic once per week after each expansion 
reading to maintain a supply of sufficient moisture. All matching prisms were kept in a moist 
curing room at 23°C (73°F) and 100% relative humidity. The non-reactive control slab remained 
in the concrete laboratory at a constant 23°C (73°F) and was draped in wet burlap once weekly 
after expansion readings were taken on all ASR slabs. 
 
Expansion Monitoring 
Expansion measurements for the slabs and prisms were taken once a week on the same day. 
Expansions on the top of the slabs were measured with the person taking measurements kneeling 
on top of the slab in the center of the DEMEC disc square. For reference purposes, each side of 
the slab was assigned a compass direction (i.e. north, south, east, and west). Measurements of the 
sides of the slabs were taken as shown in I-4 (top). The prisms were measured with the north end 
to the left of the person conducting the measurements, as shown in Fig. I-4 (bottom).  
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Figure I-4 Measuring orientation of slabs (top) and ASR matching prisms (bottom). 

 
The frequency of the readings increased as damage began reaching the desired levels. Values 
from each face of each specimen were averaged and reported as the overall percent expansion of 
that particular specimen. Target average expansions for the reactive slabs were 0.05, 0.10, and 
0.20% (±0.02%). Once the desired average expansion value was reached on a slab, the slab and 
its matching prisms were removed from their conditioning locations. Fig. I-5 illustrates the 
expansions of the ASR slabs (top) and the matching prisms (bottom) over time. 
As expansions increased in the reactive slabs, some map cracking and efflorescence could be 
seen on the surfaces, as illustrated in Fig. I-6. Reactive prisms also exhibited cracking and 
efflorescence over time, as shown in Fig. I-7.  
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Figure I-5 ASR expansions for slabs (top) and matching prisms (bottom). Horizontal dashed 
lines indicate target expansions for the reactive slabs. 
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Figure I-6 Map cracking and efflorescence on the top of an ASR slab. Yellow arrows indicate 
areas of efflorescence. 

 
Figure I-7 Cracking and efflorescence on an ASR prism. 
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Ultrasound Measurements 

Acoustic nonlinearity  

Since one needs to related the measured acoustic nonlinearity with the degree of ASR damage, 
acoustic nonlinear parameter in attenuated media is needed.  
From the earlier research [8], the wave equation with frequency dependent attenuation has the 
form of  
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c is the phase velocity of longitudinal wave, K represents the attenuation coefficient. 
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Wave Speed Measurements 

 To observe linear behavior of ultrasound propagation in the prepared prism samples, through-
transmission method has been used to obtain longitudinal wave velocity of each sample as shown 
in fig. I-8. 

 
Figure I-8. Experimental setup for wave speed measurement. 

 
The size for the matching prisms is 102 x 76 x 406 mm (4 x 3 x 16 in.).  
Here, ASR1,2 and 3 (ASR samples) have huge attenuation due to micro cracks inside, shorter 
path and smooth surface for the contact of sensors were needed. By taking into account those 
factors, 4inch path has been selected. By simply recording the arrival time of primary wave at the 
receiver, one can calculate the ultrasonic velocity change in each ASR specimen. The values 
have been obtained by averaging 6 measurements.  

 
Figure I-9. Results of longitudinal wave velocity 
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Fig I-9 shows that non ASR specimen, ASR0, has the faster wave speed than the other ASR 
damaged samples. It is because ASR samples have higher level of crack density due to ASR 
induced stresses and having more micro cracks results in the change of strength and density of 
the specimens. However, it is still hard to determine which ASR sample has higher degree of 
crack density among ASR damaged samples. To this end, nonlinear ultrasound test has been 
being conducted now and the experimental results will be discussed in the next report.  
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III.3.6 The constitutive model for continuum analysis of ASR induced damage 

 
Introduction 

Numerous concrete structures, such as dams and bridges, are suffering from deterioration due to 
alkali-silica reaction (ASR). ASR is a chemical reaction between alkalis in Portland cement paste 
and certain amorphous silica in a variety of natural aggregate. The ASR produces a soft viscous 
substance called the ASR gel. ASR gel can expand in time by imbibing water from cement paste 
and exerts pressures on the surrounding matrix, causing extensive cracking in concrete. Thus, the 
strength and stiffness of concrete can be reduced substantially.  
Once ASR gel migrates from the reacted aggregate and reaches the cement paste, it takes up 
calcium and loses alkali thus its composition approaches the one of C-S-H gel and thus loses its 
potential for expansion. (Katayama, 2008). Therefore, produced ASR gel can be divided to two 
part. First, part of gel that reaches cement paste and it will not cause expansion. Second, part of 
gel that accumulate in aggregate or interfacial transition zone (ITZ) and it can be expansive.  
Preceding argument can be illustrated as following,

 
Figure II- 1.ASR reaction process 

Following picture from experiment supports stated argument. As it can be seen in this figure, gel 
accumulate in some regions, and from that regions it starts to enforce pressure on concrete. 
Finally, this pressure will go so high that it will crack aggregate and mortar.  
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Figure II- 2. ASR induced cracking pattern 

 
Simulation Method  

Accumulated ASR gels can be called gel regions. In terms of simulation, first specimen 
discretized to small parts, and some parts are considered as gel regions and others are considered 
as normal concrete. Volume of gel regions can be increased either by production of new gel or 
expansion of old gel by imbibing water. Thus, gel regions undergo expansion and this expansion 
can cause damage in concrete. Figure II-3 illustrate this method. Yellow regions in this figure are 
gel regions and orange ones are normal concrete. 

 

Figure II- 3. Selecting gel regions 
 

Calculating ASR induced pressure and cracking 
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According to the model proposed by Bazant and Steffens and its modification by Alnaggar and 
Cusatis, ASR gel production can be simulated in time. This produced gel can migrate from 
reacted aggregate or remain in or near the aggregate. The part that migrate is not important for 
swelling. Thus, throughout simulation only part of gel that accumulate near or inside of 
aggregate will be considered. Expansion of accumulated gel in gel regions cause damage in 
concrete. ASR gel can also extrude to damage regions and it will reduce pressure in gel regions. 
Therefore, total volume increment of gel and induced pressure because of this increment can be 
calculated as, 

 ݀ ௘ܸ௙௙ ൌ ݀ ௚ܸ௘௟ െ ݀ ௜ܸ௡ (1)
 
 

݌݀ ൌ
݀ ௘ܸ௙௙

ߢ
 (2)

 
 Where ݀ ௚ܸ௘௟ is total volume of produced gel, and ݀ ௜ܸ௡ represents extruded gel into damaged 
regions that is the only unknown of equations. κ is bulk modulus of gel and p is pressure in gel 
regions. In this study properties of gel considered as same as water ones. In order to Model 
concrete and its damage Microplane model (M7) is used. Damaged volume can be calculated by 
exploiting Principal inelastic strains. Inelastic strain increments can be defined as, 
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where ν and E are Poisson ratio and young modulus of concrete, and ݀߳௜௝
ᇱᇱ  represent inelastic 

strain. In calculating these strains unloading in each increment assumed to be linear. Principal 
inelastic strains then can be calculated using these inelastic strains. Finally, using principal 
inelastic strains and volume of elements, inelastic volume increment and current empty inelastic 
volume can be calculated.  

 ܸ݀ᇱᇱ ൌ ௘ܸ௟௘௠௘௡௧ ሺ ݀߳ଵ
ᇱᇱ ൅ ݀߳ଶ

ᇱᇱ ൅ ݀߳ଷ
ᇱᇱሻ (4)

  
 ௡ܸ௘௪

ᇱᇱ ൌ ௢ܸ௟ௗ
ᇱᇱ ൅ ܸ݀ᇱᇱ (5)

  
Where	݀߳ଵ

ᇱᇱ,݀߳ଶ
ᇱᇱ,݀߳ଷ

ᇱᇱare principal inelastic strains, and ܸᇱᇱrepresent current empty inelastic 
volume. Word empty is used since some parts of produced inelastic volume have been already 
filled by gel in previous increments.  
Accumulated gel will move to inelastic volume regions and will fill them. Amount of gel that 
will extrude depend on gel regions pressure and partition of inelastic volume that is empty. Thus, 
extruded gel into damaged regions can be calculated as, 

 dV୧୬ ൌ Vᇱᇱexpሺെβpሻ (6)
 
Where m represents pressure in gel regions and β is a constant. 
Duration of ASR experiments is long and usually specimen is under external pressure. Therefore, 
creep and shrinkage will be significant source of deformation. In this study for considering creep 
and shrinkage, B3 model is adopted combined with Microplane model. These models should be 
considered together because usually external loads are big and creep and damage will occur 
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simultaneously. Usually this important phenomena has been neglected in other models in 
literature. Therefore, other models can't fit properly experiments for different external loading. 
Results 

To verify the ability of the model to predict correctly ASR-induced expansion under different 
loading and confining conditions, experimental results obtained by (Multon and Toutlemonde ) 
was simulated. Experiments were performed using sealed cylindrical specimens (240 mm length 
and 130 mm in diameter).  
Figure II-4 (a) to (d) shows four different experiments. This figures show comparison for axial 
stresses.  As it can be seen in figures simulation results are in good agreement with simulation 
results.  

 
Figure II-4 ( a ) 

 
Figure II-4 ( b ) 

 
Figure II-4 ( c ) 

 
Figure II-4 ( d ) 

Figure II- 4 
 
Figure II-5 shows comparisons for radial strains. As it can be seen results are in good agreement 
with experiments.  

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0 100 200 300 400 500

A
xi
al
 S
tr
ai
n
 (
%
)

Time (day)

Experiment

Simulation

Unrconfined
0 MPa

‐0.09

‐0.07

‐0.05

‐0.03

‐0.01

0 100 200 300 400 500
A
xi
al
 S
tr
ai
n
 (
%
)

Time (day)

Experiment

Simulation

Unconfined
10 MPa

0

0.05

0.1

0.15

0 100 200 300 400 500

A
xi
al
 S
tr
ai
n
 (
%
)

Time (day)

EXPERIMENT

SIMULATION

Confined 5mm
0 MPa

‐0.045

‐0.035

‐0.025

‐0.015

‐0.005

0 100 200 300 400 500

A
xi
al
 S
tr
ai
n
 (
%
)

Time (day)

Experiment

Simulation

Confined 3mm
10 MPa 



NEUP CFP-12-3736 Final Report   11/30/2015 

186 
 

 
Figure II-5 ( a) 

 
Figure II-5 ( b ) 

 
Figure II-5 ( c ) 

 
Figure II-5 ( d ) 

Figure II- 5 
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III.3.7 Linear and Nonlinear Ultrasonic Test in ASR Damaged Concrete Prisms 

 

Introduction   

Alkaline-silica reaction (ASR) is one of many undesirable degradation mechanisms in concrete. 

Although this reaction has not been fully understood yet, it can be briefly explained by several chemical 

reactions [1, 2]. First, alkali cations and hydroxyl ions (OH-) from concrete pore solution attack the 

siloxane chain (Si-O-Si) in reactive aggregates. It releases SiO- molecules and then this molecules start 

forming a gel by attracting the alkali cations in the pore solution. This corss-linked gel is called ASR gel. 

Next, the ASR gel absorbs moisture from the surrounding environment and expands its volume as it 

imbibes water. Such volumetric expansion of the ASR gel induces large internal pressure, which may 

then cause microcracking of the concrete[3]. To assess this ASR inducing damage, people in the industry 

drill a core from an existing concrete structure and conduct microcopy on the drilled core. However, that 

drilling task can cause additional damage to the structures and it is not practical to inspect an entire 

structure. For safe operation of concrete structures, nondestructive evaluation (NDE) techniques are 

needed to monitor and characterize ASR damage. 

There have been many researches carried out to characterize ASR damage. One of the most well-

known methods is expansion test method such as the accelerated mortar bar test (AMBT), the concrete 

prism test (CPT) and the accelerated prism test (ACPT). All of these methods rely on volume expansion 

of a specimen. Therefore, they have their own drawbacks, e.g., 1) the tests are bulk assessment of ASR 

damage over an entire specimen so that they cannot provide spatial variation of ASR damage, 2) once the 

sample has expansion in volume, it can be considered that the sample has already been in crack initiation 

and crack growth damage stage although early stage of damage detection is needed.   

To overcome those shortcomings, there have been many methods tried to characterize ASR damage 

with the aid of linear ultrasonic technique such as pulse velocity measurement and acoustic attenuation 

test. However, these linear ultrasonic methods are showing inconsistent results each other and not 

sensitive to microcarck detection at early damage stage in materials[4-7]. On the other hand, it is shown 

in many papers that nonlinear ultrasonic methods have more sensitivity to detect the early stages damage 

[8, 9]. One of the most well-known nonlinear ultrasonic techniques is second harmonic test. This test uses 

the double frequency component generated by the interaction of fundamental incident wave with a 

damaged material. However, for the media which has huge attenuation like a concrete, it would be less 

efficient to monitor double frequency component which has higher attenuation level.  
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Another nonlinear ultrasonic method called nonlinear wave mixing technique mixes two fundamental 

frequency components within a material and generates difference frequency component of two 

fundamental ones[10]. [10] shows that nonlinear parameter in a mortar bar changes with respect to the 

exposure time to alkali solution but it ignored the attenuation in the mortar bar. Therefore, in this study, 

nonlinear mixing wave technique is used to assess a degree of ASR damage in prepared concrete prisms, 

taking into account the attenuation. To this end, asymptotic solution of a wave equation in a damped 

media will be derived later in this paper. Finally, experimentally measured acoustic nonlinear parameter 

will be plotted to see if the acoustic nonlinearity is related to the degree of ASR damage.  

Nonlinear Mixing Wave Theory in Damped Media 

Since the material nonlinear parameter  is proportional to amplitude of second order wave, we 

derive  in nonlinear wave mixing technique. As shown in Figure I-1, two longitudinal primary 

waves are transmitted into the sample and the interaction of these two incident waves generates 

new longitudinal waves.   

 

Figure I-33Two longitudinal wave mixing in a sample

Consider the 1D wave equation governing the pure longitudinal wave propagation in x direction 

From the earlier research [11, 12], we set the following wave equation 

 
2

2
2

2

3

2

2
2

2

2

x

u

x

u
c

xt

u
K

x

u
c

t

u
LL 















   (7)

where Lc , K  and  are longitudinal wave velocity, damping coefficient and acoustic nonlinear 

parameter respectively. A prescribed displacement with two frequency components, 1 and 2 , at x=0 is 

 )cos(]exp[)cos(]exp[),0( 22111 txVtxUtu    (8)
 where U and V are the amplitude of the incident wave before attenuated for each frequency 

component. By using the perturbation method with assumption of 21 uuu   where 1u  and 2u  are 

the first order and second order solution respectively, we have two sets of wave equation,  
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The solution of e.q. (3) is 

 
))(cos(())(cos(( 2

)(
1

)(
1

21

c

x
tVe

c

x
tUeu xx    

 
(11)

where 3

2
1

1 2 Lc

K   and 3

2
2

2 2 Lc

K  . 

The solution of (4) has several terms of frequency components and in this study, we will focus on the 

term with frequency difference component, 21   .  

To satisfy the boundary condition, 0),0(2 tu , the solution with 21    is 
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where 2u is the amplitude of displacement at 21    and  represents 21   . If K goes to 

zero, 2u  becomes the same as the one from undamped system. 
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Finally, acoustic nonlinear parameter is defined as 
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where ||*||U and ||*||V  are the attenuated amplitude of displacement for each fundamental frequency 

obtained in frequency domain.  
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Experimental Method 

Sample Preparation 

12 concrete prisms with four types of the different levels of ASR damage were constructed and 

conditioned. Specimen dimensions were 102 x 76 x 406 mm (4 x 3 x 16 in.) for the samples. The 

materials used to create the reactive ASR specimen group (ASR1, ASR2, and ASR3) included two 

reactive coarse aggregates from Wells, Maine (RCA1) and Bernalillo, New Mexico (RCA2), a highly-

reactive fine aggregate from El Paso, Texas (RFA), and a Type I portland cement with a relatively high 

equivalent alkali content (Cement 1). Reactivity of all aggregates in this study was based on performance 

in the ASTM C1293 concrete prism test [13]. Sodium hydroxide (NaOH) was added to the reactive 

mixtures to obtain a 1.25% equivalent alkali content, by mass of cement. The ASR control mixture 

(ASR0) consisted of one non-reactive coarse aggregate (NCA), a non-reactive fine aggregate (NFA), and 

a low-alkali Type II portland cement (Cement 2). Both the NCA and NFA were acquired from a source in 

Calera, Alabama. The w/cm was 0.50 for all mixtures. Relevant material properties for mixture 

proportioning are listed in Table 1. Some of the listed materials were also used in the freeze-thaw 

specimens. Mixture proportions for the ASR specimens are shown in Table 2. Finally, each of four groups 

had three samples and we had 12 samples in total. Figure I-2 shows the mold used to produce the prisms 

and Figure I-3 shows the produced samples. 

Table 1: Material properties for cements and aggregates for mixture proportioning. 

Material Na2Oeq, % 
Absorption 

Capacity, % 
Bulk Specific Gravity 

(Oven Dry) 

Cement 1 1.10 - 3.15 

Cement 2 0.53 - 3.15 

RCA1 - 0.38 2.77 

RCA2 - 0.60 2.64 

NCA - 0.70 2.74 

RFA - 1.10 2.57 

NFA - 1.00 2.70 
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Table 2: Mixture proportions for ASR specimens. 

Material 
Quantity, kg/m3 (lb/yd3) 

ASR Reactive ASR Control 

Cement 1 420 (708) - 

Cement 2 - 420 (708) 

Water 210 (354) 210 (354) 

RCA1 (oven dry) 429 (723) - 

RCA2 (oven dry) 429 (723) - 

NCA (oven dry) - 1095 (1845) 

RFA (oven dry) 818 (1379) - 

NFA (oven dry) - 639 (1077) 

NaOH 1.63 (2.74) - 

 

 

 

Figure I-34 Steel mold for ASR matching prims
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Figure I-35 ASR reactive concrete prisms

 

To induce ASR in the reactive samples, all prisms were kept in a moist curing room at 23°C (73°F) 

and 100% relative humidity. The non-reactive control samples were remained in the concrete laboratory 

at a constant 23°C (73°F). The samples in the group of ASR1, ASR2 and ASR3 have been conditioned 

for 170days, 117days and 104days respectively in order that the degree of ASR damage is changed in the 

order of ASR1>ASR2>ASR3>ASR0.  

Ultrasonic Measurements 

To see the relation between each ultrasonic measurement results and the degree of ASR damage, 

longitudinal wave velocity, acoustic attenuation and the amplitude at the frequency difference were 

measured. Those parameters were used to calculate acoustic nonlinear parameter later on. The 

measurements were conducted twice at 6 different points on each sample so that we can obtain averaged 

value over 36 data for each ASR damage level, ASR0, ASR1, ASR2 and ASR3. Figure I-4 shows the 

position for 6 different measurements on the sample.  
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Figure I-36 Six different location of the measurement in concrete prisms 

 

Pulse Velocity Measurement  

Ultrasonic tests were conducted to measure the ultrasonic pulse velocity (UPV), attenuation and 

acoustic nonlinear parameter in the concrete prism samples with different levels of ASR damages. All 

data were obtained by carrying out through transmission tests as schematically illustrated in Figure I-5. A 

high-vacuum grease were used as a couplant to attach the transducers to the samples. For repeatability, 

measurements on each point at each sample were repeated two times by completely detaching and re-

attaching the transducers so that each sample has 12 data over 6 different locations.  

 

Figure I-37 Experiment setup for wave velocity measurement 
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For the UPV, 9 cycles of incident wave at 0.5MHz propagate by a longitudinal wave PZT transducer 

with the central frequency of 0.5MHz which was put on the one side of the sample. On the other side of 

the sample, another longitudinal wave PZT transducer whose central frequency was 0.5MHz is used as a 

receiver. A time domain were recorded by a Tektronix TDS 5034B oscilloscope to see traveling time in 

4”. 

Attenuation Measurement 

To obtain the attenuation coefficient, the amplitude changes were monitored. In case of less damped 

media, attenuation coefficients were measured by pulse-echo method[14]. However, the pulse-echo 

method is not useful for the sample used in this study due to huge attenuation where the incident waves 

seem to be totally decayed before returning back to a receiver. In this study, therefore, through-

transmission approach was used instead of pulse and echo method. Although some researches simply 

compared the amplitudes received with and without the sample between a transmitter and a receiver[15, 

16], it is still necessary to consider additional attenuation factor due to contact losses[17]. So the 

attenuation coefficient was measured as follows. First, a transmitter and a receiver whose central 

frequency are 0.5MHz and 0.1MHz respectively were attached face to face as shown in Figure I-6 (a) and 

signals in a time domain were recorded by a Tektronix TDS 5034B oscilloscope. The recorded signals 

were then converted to a frequency domain by FFT. Here, amplitudes of 0.35MHz and 0.25MHz were 

denoted by 0A and 0B respectively. Next, the concrete sample was placed between the transmitter and 

the receiver at this time and amplitudes corresponding to 0.35MHz and 0.25MHz were recorded in the 

same way as the previous measurements. The obtained amplitudes were named 1A  and 1B . Figure I-7 

shows the example of FFT result for four different amplitudes. 
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(a) 

 

(b) 

Figure I-38 Experiment setup for attenuation with (a) initial input measurement and (b) attenuated 

wave measurement 
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(a) (b) 

(c) (d) 

Figure I-39Amplitude Analysis at (a) 0.35MHz and (b) 0.25MHz without the sample and at (c) 
0.35MHz and (d) 0.25MHz with the sample  

 

[17] recalls there is additional energy loss of incident waves when transmitter contacts with the sample 

due to impedance difference and set the following relations, 

 
]exp[],exp[ 201101 xKBBxKAA cc    (16) 

where the amplitudes of incident waves are decreased due to the factor cK  which is additional 

attenuation factor due to contact losses. From e.q (5), we know 
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Thus, we can calculate 1  and 2  from e.q (10) and (11).  

Acoustic Nonlinear Parameter Measurement 

A schematic of the nonlinear wave mixing measurement setup is shown in Figure I-8. 

 

Figure I-40 Experiment setup for nonlinear wave mixing technique 

 

The two frequency components in the incident wave were generated by a 1.0 in diameter broadband 

transmitter with a central frequency of 0.5MHz. The mixed waves were received by a 1.5 in diameter 

broadband receiver with a central frequency of 0.1MHz. To match the pulse duration as 18 sec , 6.3 

cycles of 0.35MHz and 4.5 cycles of 0.25MHz were generated by RAM-5000 function generator. Since 

the transmitter and the receiver have already been attached to each side of the sample for the attenuation 

test, nonlinear parameter measurement was conducted while the sensors kept attached to the sample. In 

this way, nonlinear parameter can be calculated based on the attenuation measured having the same 

contact condition. The frequency spectrum of incidents waves in the frequency domain is shown in Figure 

I-9 (a) measured by putting the transmitter and the receiver face to face, which tells us the two frequency 

components were properly generated. Since mixing two primary longitudinal waves generates new 

longitudinal wave at difference frequency of two primary frequencies, received signal through the sample 

provides information of second order wave’s amplitude. So, ||*||U , ||*||V  and  |||| 2u  in e.q. (9) 

were experimentally measured. 
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(a) (b) 

Figure I-41 Frequency spectrum of (a) two incident waves and (b) received signal through the sample

 

Ultrasonic Measurement Results  

With the aid of linear and nonlinear ultrasonic experiments, variation of the ultrasonic velocity, 

attenuation and nonlinear parameter  were monitored with the samples at different ASR damage. For 

all ultrasonic tests, each sample was measured twice at the same position and it has six different locations. 

Since each ASR damage group has 3 samples, total 36 data in each group (ASR0, ASR1, ASR2 and 

ASR3) were experimentally obtained and averaged. Next, the averaged values of each group were 

normalized by the averaged value of ASR0.  

Figure I-10 shows normalized ultrasonic pulse velocity graph by plotting averaged values. The error bar 

indicates the standard error of 36 measurements. It is seen that control specimen (ASR0), has the faster 

wave speed than the other ASR damaged samples (ASR1, ASR2, ASR3) and the maximum difference is 

about 17%. It is because ASR damaged samples have higher level of crack density due to ASR inducing 

stresses and having more micro cracks results in the change of strength and density of the specimens. 

However, there is no clear trend for the velocity change in ASR reactive samples and is still hard to 

determine which sample has higher degree of crack density among ASR damaged samples. 
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Figure I-42 Normalized wave velocity

 

 

Figure I-11 shows the normalized attenuation. It is found that the attenuation of ASR damaged samples 

were bigger than the control samples but it is hard to see the difference of each ASR damaged sample like 

wave velocity measurement. Through two types of linear ultrasonic measurement, linear method has 

sensitivity to macrocracks but is not efficient to assess microcrack density. 

Finally, normalized nonlinear parameter  is plotted in Figure I-12. As shown in this graph, we can see 

distinguishable change for   even from each ASR damaged sample. We note that   was calculated 

based on contributions from the amplitude of mixed wave at 0.1MHz, wave velocity and attenuation.  
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Figure I-43 Normalized Attenuation Coefficient

 

Here, it is clearly shown that nonlinear parameter of each ASR damage group was different from the 

others, i.e., control samples has the least   and ASR1 which was designed to have the most damages 

shows the biggest  . Therefore, we found that (1) nonlinear ultrasonic mixing technique yields consistent 

and repeatable results, (2)  increases with higher level of ASR damage, and (3)  has better 

sensitivity to ASR damage than wave velocity and attenuation change.   

 

Figure I-44 Normalized   
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Destructive Method 

Microscopy 

To conduct both microcopy and compressive strength test, four 1.5” X 1.5” X 3” samples were taken 

from each prism by using a low speed saw (IsoMet) and ethanol as a lubricant. Therefore, each ASR 

group had 12 samples.The samples were then polished on a grinder/polisher down to 240 grit size with 

water. Digital images were taken on each sample using a stereomicroscope at magnifications of 6.5X. 

Micrographs are shown in Figure I-13. It is found that first, ASR control sample (ASR0) does not have 

gel or cracks as a product of ASR as shown in Figure I-13-(a) while ASR damaged samples have gel that 

looks like a white rim around an aggregate shown in (b) and (c) and even cracks in (d) and second, all 

cracks found by microscopy exist only in the aggregate.  

(a) (b) 

(c) (b) 

Figure I-45 Microscopy of (a) ASR Control sample and (b), (c) and (d) ASR damaged sample 

 

ASR GEL 

ASR GEL 

Crack 
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Through this work, one can see a process of crack evolution. Firstly, ASR gel is produced at an interface 

between cement past and aggregate. Second, once this gel is formed much enough, it starts to penetrate 

the interface and grows into the aggregate. Lastly, these cracks are propagated through cement paste after 

breaking aggregate completely. 

 

Visualization of ASR product    

The micrographs showed that ASR damaged samples have silica gel and micro cracks. However, in many 

photos, it is still difficult to determine which one is gel and how much gel is produced. To this study, an 

image analysis algorithm was coded in MATLAB language based on an assumption that ASR gel has a 

certain color, e.g. white as shown in Figure I-14-(a) and the number of pixels in white color can be 

counted by the code. First, a color image (Figure I-14-(a)) from microscope is converted to a gray image 

(b) based on brightness of each pixel. Second, a histogram of the gray image with respect to the 

brightness is plotted in range from 0 (black) to 255 (white). Here, one can determine what each bar in the 

histogram represents as shown in Figure I-14-(c) and which threshold value in the brightness scale is 

chosen to filter the image. In the case of Figure I-14-(c), 200 was chosen as the threshold value and any 

pixels whose brightness is less than the threshold value are filtered to become a black pixel. Figure I-14-

(d) shows all pixels but pixels in ASR gel become black. Finally, a position of the ASR gel is drawn as 

red rim as Figure I-14-(e). It is seen that the image analysis algorithm successfully found ASR gel. As the 

next step, this algorithm was applied to the photos taken by the microscope as shown in Figure I-15. 

Since the majority of pixels are from cement paste, bars beyond 8000 pixels in Fig. 15-(c) were 

considered as cement paste. Therefore, a value of 198 was chosen as the threshold value through an 

analysis of the image histogram in Figure I-15-(c). Figure I-15-(e) shows the algorithm can work for a 

micrograph as well. To quantify the amount of ASR gel in each micrograph, the fraction of the number of 

white pixels in Figure I-15-(d) over the number of total pixels was calculated.       
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(a) (b) 

 

(c) 

(d) (e) 

Figure I-46 A concept of Image analysis  
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(a) (b) 

 

(c) 

 

(d) (e) 

Figure I-47 Observation of ASR Gel through image analysis 
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Figure I-48 Quantification of ASR gel from microscopy and image analysis 

 

12 fraction values in each ASR group through an image analysis are averaged. It shows that the sample in 

most damage group, ASR 1, has the largest fraction values and the algorithm found the least ASR-

guessed pixels in the least ASR damage group, ASR 3.  
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Compressive Strength Measurement 

After taking a microscopy for 36 samples, compressive strengths of all samples used for the microscopy 

were measured by using MTS Axial/Torsion Material Test System as shown in Figure I-17. The machine 

applied compressive load on the top of samples with rate of 0.006mm/sec. 

  

Figure I-49 Compressive Strength Measurement Figure I-50 Sample failure after compression 

 

The maximum force applied to the sample until failure was recorded. The broken sample is shown in Fig. 

18. Averaged compressive strength over 12 samples per each ASR group is plotted in Figure I-19. From 

this chart, one can find 1) the compressive strengths of all ASR damaged samples are decreased compared 

to that of fresh concrete and 2) the most damaged sample group, ASR 1, has the most degradation from 

the reference strength. Therefore, we can conclude the order of ASR damage is ASR 1>ASR> 2>ASR 3 

through Figure I-16 and Figure I-18. 
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Figure I-51 Results of Compressive Strength Measurement 

 

Conclusion  

 First, linear and nonlinear ultrasonic measurements have been carried out to see the variations of wave 

velocity, acoustic attenuation and acoustic nonlinear parameter with respect to the different ASR damage 

level. For the wave velocity measurement, it is seen that non-damaged sample has higher speed than ASR 

damaged samples because ASR damaged samples have higher level of crack density due to ASR inducing 

stresses and having more micro cracks and it results in the change of strength and density of the 

specimens. However, this measurement results were not able to show distinguished difference among 

three different levels of ASR damaged samples. Results of acoustic attenuation measurement show that 

ASR damaged samples have larger attenuation than control samples but it is still hard to determine the 

level of ASR damage among three groups of ASR damaged samples. Finally, with the aid of nonlinear 

mixing wave method, it is found that nonlinear ultrasonic measurement results have higher sensitivity to 

the density of ASR damages while the other linear measurements were not able to show the difference 

among damaged samples, i.e., the more damaged samples have the larger acoustic nonlinearity.   

 Second, microscopy has been carried out and the image analysis was implemented to quantify amount of 

ASR gel. Through this study, one can see the feasibility of image processing method to quantify this and 

it showed meaningful data by providing the order of ASR pixels as ASR 1> ASR 2> ASR 3.  

 Lastly, compressive strengths of 1.5” X 1.5”X 3” samples from the prepared prisms were measured. 

This measurement shows that ASR damage degraded concrete samples and the order of ASR damage is 

also well matched with previous two results.  
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From all studies done in this quarter, it is seen that measuring acoustic nonlinearity can be a good tool to 

assess the ASR damage level of concretes.  
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III.3.8 The constitutive model for continuum analysis of ASR induced damage 

 

 
Introduction 

In this study, till now simulations was based on condition that there is no drying from surface. Thus, the 

effect of environment conditions was neglected. This is usual assumption for modeling ASR reaction in 

literature, but in reality and for practical purposes, environmental condition is very important. The most 

important environmental condition that should be considered is, environmental humidity. Humidity can 

have very important effect in progress of ASR reaction. Water has different roles in ASR reaction. Some 

of the reasons are, 

1. The pore water acts as the necessary transport medium for the mass transport of hydroxyl and alkali 

ions required by the reaction. 

2. The expansion of the gel is essentially governed by the imbibition of water. 

3. For the reaction to continue, water must be supplied by macro-diffusion through the pores of concrete. 

As it can be seen, effect of water is so important that it can change rate of reaction significantly and even 

in low humidity it would stop the reaction. In order to consider this effect, different parts of model should 

be modified. First, produced mass of gel should be modified in order to can consider effect of humidity. 

Second, water diffusion should be considered. This diffusion can be outward if the humidity of the 

environment be less than humidity of the specimen, and it would be inward if the humidity condition be 

opposite.  Also, in order to consider correct humidity profile, effect of self-desiccation should be 

considered. Self-desiccation should be considered since hydration process would use water and this water 

usage would decrease humidity.  

Change of humidity in addition to changing rate of ASR reaction, would cause shrinkage. It would cause 

both drying and autogenous shrinkage.  In order to consider these shrinkages B4 would be used.  These 

refinements would be discussed in detail in different section of this report.  

 
Effect of humidity on gel mass production 

Producing ASR gel is highly related to presence of water. In order to consider this effect equations should 

be modified in the way that they can consider this important effect. This modification can be considered 

easily as following, 

ሶ௚௘௟ሺ݄ሻܯ ൌ .ሶ௚௘௟ܯ ݂ሺ݄ሻ 
where ܯሶ௚௘௟ is gel increment in full humidity, and function ݂ሺ݄ሻ is a function for correcting gel 

increment. This function will start from unity in full humidity and will decrease rapidly with decrease of 



NEUP CFP-12-3736 Final Report   11/30/2015 

211 
 

humidity and in humidity near 75% it would be almost zero. Fig. 1 illustrate some of necessary properties 

of this function.   

 
Figure II-1 Effect of relative humidity on produced gel 

 
Different functions can satisfy these conditions. Thus, an empirical equation that can satisfy these 

conditions would be considered and calibrated based on experimental results. A sample function for 

considering this effect can have the following form 

݂ሺ݄ሻ ൌ ቐ
ሺ݄ െ .7ሻ௡

ሺ1 െ .7ሻ௡
					 , ݄ ൐ .7

								0														,										݄ ൏ .7		
 

Where n is a parameter that should be found from calibrating experimental results.  

 

Diffusion 

 
Usually concrete structures are exposed to the environment that its humidity is less than 100%. Thus, 

water would diffuse from specimen. This drying and water loss is very important and should be 

considered in order to found humidity profile respect to time and hydration degree (as it can be seen in 

last section humidity can have great effect on ASR evolution). Other important concept in order to find 

humidity profile is finding humidity loss because of the self-desiccation. Self-desiccation can be very 

important, because lots of experiment has shown that only because of this phenome humidity can 

decrease to about 75%. Therefore, humidity change because of hydration itself can be very important. 

Fig. 2 shows this effect. As it can be seen in this figure in long time by continuing hydration process 

humidity would decrease to low values that this decrease would decelerate ASR reaction significantly.  
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Figure II-2 Effect of self-desiccation on humidity 

In order to consider transport of water through concrete, it is very important to consider right diffusivity. 

Concrete is very complex material in terms of diffusion. This complexity comes from the fact that, by 

decreasing humidity first big pores of the concrete will deplete and after that smaller pores will start to 

deplete. Thus, by decreasing humidity and depleting big pores, continuous humidity path between big 

pores will loose and because of that diffusion will decrease drastically.   

In order to find equation for water transport one should start with mass balance of water. The mass of 

moisture per unit volume corresponds to the total water content, ݐݓ. Mass conservation requires that the 

net water gain be equal to the time derivative of the total water content. If the total flux of moisture is 

denoted as  ݆ݓ, the resulting equation reads  

௧ሶݓ ൌ െ׏. ݆௪ 
After defining water change because of flux, flux itself should be found. Bazant and Najjar (1971) 

proposed and Bazant and Najjar (1972) elaborated a model for moisture transport in concrete, with the 

pore relative humidity h as the primary unknown. Their model, which has been embodied in the fib 

Model Code (Federation internationale de beton 2013), directly postulates that, under constant 

temperature, the total moisture flux is driven by the gradient of pore relative humidity. Mathematically, 

such a transport law is written as 

݆௪ ൌ െܿ௣݄׏ 
where ܿ݌ is the moisture permeability [kg/m·s], to be determined experimentally. Combining two above 

equations and using sorption-desorption isotherm, equation will become, 

ሶ݄ ൌ .׏ሺ݄ሻܭ ሺܿ௣ሺ݄ሻ݄׏ሻ 
where K is reciprocal moisture capacity (reciprocal slope of the sorption isotherm). This equation is valid 

for the case that humidity change because of self-desiccation is neglected. Humidity change because of 
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hydration, can be considered as source term and it can be added to above equation. Thus, governing 

equation would become, 

ሶ݄ ൌ ݇ሺ݄ሻ׏. ൫ܿ௣ሺ݄ሻ݄׏൯ ൅ ݄௦∗ 
Where ݄௦∗ is humidity loss because of self-desiccation. In order to find humidity change because of self-

desiccation, compete hydration model should be considered. There are lots of models for predicting 

hydration degree in literature, but none of them are both exact and fast. Thus, in this study a new 

hydration model is developed. In general, the moisture permeability ܿ௣  depends on the equivalent age, 

too, because the hydration process results into changes of porosity, tortuosity and hydraulic permeability. 

Identification of the specific form of functions k, ܿ௣ and  ݄௦∗ is quite tedious and requires extensive 

experimental data. In order to simplify equation lets combine two parameters by multiplying them and 

define a new parameter that can be named moisture diffusivity, 

ሺ݄ሻܥ ൌ ݇ܿ௣ሺ݄ሻ 
For mature good quality concretes, its values are very low—roughly 10 to 20 mm2/day at saturation (h = 

1), and for high-strength concrete even less. 

For concrete, the dependence of diffusivity on pore relative humidity is very strong (as noticed already by 

Carlson (1937)) and cannot be ignored in computations. A jump in diffusivity to roughly 5% of its value 

at full saturation occurs mainly between 85% and 60% humidity. This fact, established by Bazant and 

Najjar (1971) on the basis of experimental data on the evolution of pore humidity distributions in 

cylinders and slabs, is illustrated in Figs.3. The dotted curves, representing optimum fits by the linear 

diffusion theory, are in blatant disagreement with the data of Abrams and Orals (1965). The solid curves, 

which fit much better, are the result of optimization of the function C(h), which established that the 

humidity dependence of concrete diffusivity may be approximately described by the empirical law 

(Bazant and Najjar 1971) 

 
where 1ܥ	 ൌ ,ሺ1ሻܥ/ሺ0ሻܥ ሺ1ሻ is the diffusivity at full saturation, a0 is the ratioܥ ݄_ܿ is the pore 

relative humidity at which ܥሺ݄௖ሻ 	ൌ 	 ሾܥሺ0ሻ ൅  ሺ1ሻሿ/2, and r is a parameter affecting the shape of theܥ

curve; 
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Figure II-3 Dependence of normalized diffusivity C(h)/C1 on relative humidity h  

 
Turk 1967) analyzed by Bazant and Najjar (1971) and Bazant and Najjar (1972), the optimum value is r = 

16, and according to some other classical data (Hanson 1968), the optimum is r = 6. In some calculations 

of structures (in which, of course, many phenomenon other than drying intervened), various intermediate 

values of r seemed optimum. In absence of more recent precise measurements, it is recommended to use r 

= 12. 

Autogenous and drying shrinkage 

 
When the structure is exposed to the environment, and also there is humidity decrease because of self-

desiccation, structure would go under shrinkage. This shrinkage can be both drying and autogenous 

shrinkage. By considering moisture diffusion (that is discussed in last chapter) it is possible to find 

complete humidity profile in each step, thus it is more reasonable to use more exact definition for 

shrinkage than just using proposed average shrinkage equations. This can be done using following 

equation 

߳௦௛ ൌ  ݄׏ሻߙሺܭ
In this equation ߙ is the hydration degree that in the next section a new way to find that would be 

described. Also, in that equation K is a parameter that shows how much the material aged, and because of 

this aging how much the much material is stronger. In order to see how this model is working a simple 

simulation is done. Fig. 4 shows comparison between the experiment and simulation. As it can be seen in 

this figure, this model combined with diffusion that discussed last chapter, can predict shrinkage in good 

precision.  



NEUP CFP-12-3736 Final Report   11/30/2015 

215 
 

 
Figure II-4 Shrinkage comparison with Hanson experiment (dotted experiment, full line simulation) 

 
Hydration 

 
In order to consider humidity change and aging of the material, a comprehensive model for considering 

hydration should be developed. This model would have different stages. In first stage that would happen 

in first day after mixing concrete, nucleation and growth mechanism is important and after that important 

mechanism is transport of water through already made paste. Different steps for hydration can be 

described as it can be seen in figure. 5. As it can be seen in this figure in part (a), first model just include 

anhydrated cement with water. After very short time, water will act with cement and a thin layer of 

calcium leached zone will be produced around the cement.  Then, nucleation would happen on boundary 

of cement and by continuing hydration, C-S-H gel will grow from these zones. After almost one day of 

hydration, a complete barrier of gel will be produced around anhydarted cement. After composing this 

complete barrier, controlling mechanism would be transport of water through this barrier.  

 
Figure II-4 Different stages for hydration 
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III.3.9 Nonlinear Ultrasonic Test in ASR Damaged Concrete prisms 

 

Introduction   

Alkaline-silica reaction (ASR) is one of many undesirable degradation mechanisms in concrete. 

Although this reaction has not been fully understood yet, it can be briefly explained by several 

chemical reactions [1, 2]. First, alkali cations and hydroxyl ions (OH-) from concrete pore solution 

attack the siloxane chain (Si-O-Si) in reactive aggregates. It releases SiO- molecules and then this 

molecules start forming a gel by attracting the alkali cations in the pore solution. This corss-linked 

gel is called ASR gel. Next, the ASR gel absorbs moisture from the surrounding environment and 

expands its volume as it imbibes water. Such volumetric expansion of the ASR gel induces large 

internal pressure, which may then cause microcracking of the concrete[3]. To assess this ASR 

inducing damage, people in the industry drill a core from an existing concrete structure and conduct 

microcopy on the drilled core. However, that drilling task can cause additional damage to the 

structures and it is not practical to inspect an entire structure. For safe operation of concrete 

structures, nondestructive evaluation (NDE) techniques are needed to monitor and characterize ASR 

damage. 

There have been many researches carried out to characterize ASR damage. One of the most well-

known methods is expansion test method such as the accelerated mortar bar test (AMBT), the 

concrete prism test (CPT) and the accelerated prism test (ACPT). All of these methods rely on 

volume expansion of a specimen. Therefore, they have their own drawbacks, e.g., 1) the tests are 

bulk assessment of ASR damage over an entire specimen so that they cannot provide spatial variation 

of ASR damage, 2) once the sample has expansion in volume, it can be considered that the sample 

has already been in crack initiation and crack growth damage stage although early stage of damage 

detection is needed.   
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To overcome those shortcomings, there have been many methods tried to characterize ASR damage 

with the aid of linear ultrasonic technique such as pulse velocity measurement and acoustic 

attenuation test. However, these linear ultrasonic methods are showing inconsistent results each other 

and not sensitive to microcarck detection at early damage stage in materials [4-7]. On the other hand, 

it is shown in many papers that nonlinear ultrasonic methods have more sensitivity to detect the early 

stages damage [8, 9]. One of the most well-known nonlinear ultrasonic techniques is second 

harmonic test. This test uses the double frequency component generated by the interaction of 

fundamental incident wave with a damaged material. However, for the media which has huge 

attenuation like a concrete, it would be less efficient to monitor double frequency component which 

has higher attenuation level.  

Another nonlinear ultrasonic method called nonlinear wave mixing technique mixes two fundamental 

frequency components within a material and generates difference frequency component of two 

fundamental ones[10]. [10] shows that nonlinear parameter in a mortar bar changes with respect to 

the exposure time to alkali solution but it ignored the attenuation in the mortar bar. Therefore, in this 

study, nonlinear mixing wave technique is used to assess a degree of ASR damage in prepared 

concrete prisms, taking into account the attenuation. To this end, asymptotic solution of a wave 

equation in a damped media will be derived later in this paper. Finally, experimentally measured 

acoustic nonlinear parameter will be plotted to see if the acoustic nonlinearity is related to the degree 

of ASR damage.  

  



NEUP CFP-12-3736 Final Report   11/30/2015 

219 
 

QUADRATIC NONLINEARITY AND DAMPING 

Recently, collinear mixing of nonlinear waves has been studied and employed for nondestructive 

evaluation (NDE) in several studies [11-13]. In this section, we will derive the necessary equations 

pertinent to this work for the mixing of two longitudinal waves in an elastic solid with quadratic 

nonlinearity and damping. To be definitive, we consider the configuration illustrated in Fig. 1. Two 

longitudinal plane waves of frequencies 1  and 2  are induced into the sample by a transmitter 

attached to the left end of the sample. Without losing generality, one can assume that 1 2  . The 

waves will propagate in the positive x-direction. A receiver is attached to the right end of the sample. 

The distance between the transmitter and the receiver is L. As the two primary waves propagate, they 

interact with each other due to the nonlinearity in the medium. Such interaction generates a third 

longitudinal wave of frequency 1 2   d . This third wave will be called the mixing wave. Since 

all three waves have the same phase velocity, they will arrive at the receiver the same time. However, 

they can be distinguished by their frequency components. In addition to mixing, the amplitude of all 

three waves will decay due to material damping. Since damping is generally frequency dependent, 

the rate of amplitude decay for each wave is different. In what follows, we carry out the derivation to 

understand how each wave decays as they propagate through the medium.    

 

Fig. 1 Two longitudinal wave mixing in a sample 
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 We start by considering the one-dimensional wave equation for the longitudinal wave motion 
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where Lc  is the longitudinal phase velocity,   is the acoustic nonlinearity parameter [14], and 

K  is the damping coefficient [15, 16]. The total incident wave can be expressed as 
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where nU  is the amplitude at 0x   for the primary wave with frequency n , and n  is the 

corresponding coefficient of attenuation. 

 Assuming that the nonlinearity is much weaker, one may write the total wave field as 0u u v  , 

where 0v u  so that terms of higher ordered than v  can be neglected. Under these assumption, 

the governing equation for 0u  and v  can be derived from 
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Substituting (97) into 

DisplayText cannot span more than one line!  yields the relationship between the damping 

coefficient and the coefficient of attenuation, 
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 The solution to (4) has several frequency components. This work focuses on the frequency 

component, 1 2d    . The corresponding wave that satisfies the homogeneous boundary 

conditions (0, ) 0v t   is 
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gives the amplitude of ( , )v x t . For values of practical interest, 1 2
3

exp( ) 1
L

K
x

c


  . Thus, Eq. (102) 

can be simplified to 
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Obviously, in the limit of 0K  , the amplitude A  reduces to that of the undamped system [11-

13], i.e., 
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 It follows from (103) that the acoustic nonlinearity parameter can be expressed as 
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Once A  is measured at x, the acoustic nonlinearity parameter   can be evaluated from (105) 

assuming that the incident waves ( nU  and n ) used and the material parameters ( Lc  and K ) are 

known. In practice, a more convenient form to use is 
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where *
nU  is the amplitude of the wave component with frequency n  measured at x, and n  is 

the coefficient of attenuation that is related to K through (100). Although *
nU  can be related to nU  

through 

  * nx
n nU U e  ,      (107) 

it is usually more convenient to measure *
nU  directly in practice. 

  



NEUP CFP-12-3736 Final Report   11/30/2015 

223 
 

Experiment 

Sample Preparation 

NDE field test has been implemented at EPRI on July 22nd ~23rd for both ASR damaged concrete slabs 

and prisms. For the test, four plain concrete slabs were constructed. Three were designed and 

conditioned to expand as from ASR; the fourth slab was constructed to serve as a non-expansive 

control specimen. Each slab had three small-scale accompanying prisms. The slab dimensions were 

1219 x 914 x 203 mm (48 x 36 x 8 in.) and the prism dimensions were 102 x 76 x 406 mm (4 x 3 x 

16 in.). Results for the slab samples will be discussed in the next appendix.  

For assessment on ASR damage, 12 concrete prisms with four types of the different levels of ASR 

damage were constructed and conditioned. Specimen dimensions were 102 x 76 x 406 mm (4 x 3 x 16 in.) 

for the samples. The materials used to create the reactive ASR specimen group (ASR1, ASR2, and ASR3) 

included two reactive coarse aggregates from Wells, Maine (RCA1) and Bernalillo, New Mexico (RCA2), 

a highly-reactive fine aggregate from El Paso, Texas (RFA), and a Type I portland cement with a 

relatively high equivalent alkali content (Cement 1). Reactivity of all aggregates in this study was based 

on performance in the ASTM C1293 concrete prism test [17]. Sodium hydroxide (NaOH) was added to 

the reactive mixtures to obtain a 1.25% equivalent alkali content, by mass of cement. The ASR control 

mixture (ASR0) consisted of one non-reactive coarse aggregate (NCA), a non-reactive fine aggregate 

(NFA), and a low-alkali Type II portland cement (Cement 2). Both the NCA and NFA were acquired 

from a source in Calera, Alabama. The w/cm was 0.50 for all mixtures. Relevant material properties for 

mixture proportioning are listed in Table 1. Some of the listed materials were also used in the freeze-thaw 

specimens. Mixture proportions for the ASR specimens are shown in Table 2. The reactive prisms were 

demolded the day after casting and cured in a fog room at 23 °C and 100% relative humidity.  

After the seven-day curing period, the reactive slabs and prisms were placed in the environmental 

chambers set to 38 °C and 98% relative humidity to rapidly induce the ASR reaction. The 
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environmental chamber conditions were changed to 23 °C and 50% relative humidity on days of 

expansions. To prevent the prisms from drying out, they were covered in wet burlap during while the 

chambers were at the lower temperature and relative humidity conditions. The control prisms were 

left in the concrete lab set to 23 °C and 50 % relative humidity.  

The prisms were kept in the high temperature and relative humidity environment until they were 

shipped to EPRI. Finally, each of four groups had three samples and we had 12 samples in total for the 

test.  

 

Figure I-1 Sample conditioning 
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Table 1: Material properties for cements and aggregates for mixture proportioning. 

Material Na2Oeq, % 
Absorption 

Capacity, % 

Bulk Specific Gravity 

(Oven Dry) 

Cement 1 1.10 - 3.15 

Cement 2 0.53 - 3.15 

RCA1 - 0.38 2.77 

RCA2 - 0.60 2.64 

NCA - 0.70 2.74 

FA - 1.10 2.57 

NFA - 1.00 2.70 

 

Table 2: Mixture proportions for ASR specimens. 

Material 

Quantity, kg/m3 (lb/yd3) 

ASR Reactive ASR Control 

Cement 1 420 (708) - 

Cement 2 - 420 (708) 

Water 210 (354) 210 (354) 

RCA1 (oven dry) 429 (723) - 

RCA2 (oven dry) 429 (723) - 

NCA (oven dry) - 1095 (1845) 

RFA (oven dry) 818 (1379) - 

NFA (oven dry) - 639 (1077) 
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Ultrasonic Measurements 

To see the relation between nonlinear ultrasonic measurement results and the volume expansion of the 

specimen, the amplitude at the frequency difference were measured. This amplitude was used to calculate 

acoustic nonlinear parameter. The measurements were conducted at 6 different points on each sample so 

that we can obtain averaged value over 36 data for each ASR damage level, ASR0, ASR1, ASR2 and 

ASR3. Figure I-2 shows the position for 6 different measurements on the sample.  

 

Figure I-2 Six different location of the measurement in concrete prisms 

 

Acoustic Nonlinear Parameter Measurement 

A schematic of the nonlinear wave mixing measurement setup is shown in Figure I-3. 

 

Figure I-3 Experiment setup for nonlinear wave mixing technique 
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The two frequency components in the incident wave were generated by a 1.5 in diameter broadband 

transmitter with a central frequency of 225 kHz. The mixed waves were received by a 1.5 in diameter 

broadband receiver with a central frequency of 0.1MHz. To match the pulse duration as 18 sec , 6.3 

cycles of 0.35MHz and 4.5 cycles of 0.25MHz were generated by RAM-5000 function generator. Since 

mixing two primary longitudinal waves generates new longitudinal wave at difference frequency of two 

primary frequencies, received signal through the sample provides information of second order wave’s 

amplitude. So, ||*||U , ||*||V  and  |||| 2u  in e.q. (9) were experimentally measured.  

 

Volume Expansion Measurement Results 

 

Figure I-4 Averaged Specimen Expansion Results over 49 days 

Figure I-4 shows the averaged values of expansion in three prisms (Sample A, B and C) and the last data 

points were obtained three days before the nonlinear ultrasonic measurements. According to the graph, it 

is seen that ASR 3 has the most expansion, ASR 2 has less and ASR3 has even less expansion while the 

control sample, ASR0, did not have any expansion at all. The other findings are that expansion for ASR1 

and ASR2 began to decrease at 43 days of aging since all samples had been taken out from environmental 

chamber after 40days of exposure to 38 ̊C and 98 % RH and shrinkage in volume was made. However, 

ASR3 reached to the largest expansion by 0.043 % and began shrinkage due to more reaction.  
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Comparison of Ultrasonic Measurement Results with Expansion Results  

Acoustic nonlinearity parameter,  , was measured in the samples at different ASR damage. For all 

ultrasonic tests, each sample was measured twice at the same position and it has six different locations. 

Since each ASR damage group has 3 samples, total 18 data in each group (ASR0, ASR1, ASR2 and 

ASR3) were experimentally obtained and averaged. Figure I-5 shows the measured acoustic nonlinearity 

parameter.  

 

Figure I-5 Averaged Acoustic Nonlinearity at 55th days 

To compare the acoustic nonlinearity with longitudinal wave velocity and expansion results, the 

corresponding results were normalized by the averaged value of ASR1 as shown in Figure I-6. 
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Figure I-6 Normalized Nonlinearity and Expansion of ASR damaged Prisms  

Figure I-6 shows that more alkali-silica reaction resulted in more expansion in volume and it is followed 

by higher level of acoustic nonlinear parameter. Acoustic nonlinearity parameter was increased by 187% 

while wave velocity was decreased by 5 %. Thus, it would be concluded that longitudinal wave velocity 

was not able to capture change on the level of micro damage induced by ASR but acoustic nonlinearity 

parameter is more sensitive parameter to assess ASR damage.   

In addition, if one looks at the entire expansion results, it is found that ASR 3 has more irreversible 

damage than ASR1 and ASR2 as shown in Figure I-7. It would be concluded that silica gel and its 

expansion made contribution to the volume expansion but some of those effects could be recovered by 

loss of moisture. However, if volume expansion exceeds a certain level, micro damage is produced which 

is not fully recovered. That is why ASR 3 has shown much more nonlinearity.  
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Figure I-7 Expansion results of prism over the entire test period  

Conclusion  

First, linear and nonlinear ultrasonic measurements have been carried out to see the variations of wave 

velocity and acoustic nonlinear parameter with respect to the different ASR damage level. For the wave 

velocity measurement, it is seen that non-damaged sample has higher speed than ASR damaged samples 

because ASR damaged samples have higher level of crack density due to ASR inducing stresses and 

having more micro-cracks and it results in the change of strength and density of the specimens. However, 

this measurement results were not able to show distinguished difference among three different levels of 

ASR damaged samples. Finally, with the aid of nonlinear mixing wave method, it is found that nonlinear 

ultrasonic measurement results have higher sensitivity to the density of ASR damages while the other 

linear measurements were not able to show the difference among damaged samples, i.e., the more 

damaged samples have the larger acoustic nonlinearity.  

Third, the prisms which have the highest level of acoustic nonlinearity (ASR3) showed quite different 

expansion history over the entire expansion test period. Their expansion was remained at about 0.04% 

while ASR1 was contracted from its original volume and ASR 2 shrank by expansion of 0.01%. It would 

infer that there was further damage mode occurring in ASR 3 so that accompanying expansion was not 

reduced as much as ASR1 and AS2 did.  
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From all studies done in this quarter, it is seen that measuring acoustic nonlinearity can be a good tool to 

assess the ASR damage level of concretes.  
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III.3.10 Nonlinear Ultrasonic Test in ASR Damaged Concrete slabs 

 

Sample Preparation  

Table 1 shows the detailed mixture contents of the prepared concrete slab. The freshly mixed concrete 

(91×122×20 cm) is cast, and cured, then the demolded slab is transferred into an environmental chamber 

where the temperature and relative humidity (RH) are controlled. The reactive slab is then conditioned in 

the chamber at 38 ̊C and 98 % RH for the ASR damage. Note that the environmental chamber is 

controlled to keep 23 ̊C and 50 % RH during both the ultrasonic measurements and expansion testing as 

shown in Fig. II-1(a) and (b) shows the measured expansion during the measurements period.  

 

  

(a) Temperature variation (b) Trend of measured surface expansion for 55 days.

Figure II-1. Sample preparation and controlled temperature 
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 TABLE 1. Mixture design of concrete and mortar mixtures, kg/m3 (lb/yd3). 

  Source Concrete Slab 

Water Tuscaloosa Water Supply 210 (354) 

Cement Leeds, AL Type II 420 (708) 

Coarse Aggregate Calera, AL (Vulcan) 1095 (1845) 

Reactive Fine Aggregate El Paso, TX (Cement/Jobe) 608 (1025) 

Water-to-cement ratio (w/c)  0.5 

 

 Alkali-Silica Reaction in Concrete 

Alkali-silica reaction (ASR) is one of the deleterious mechanism that can induce the serious durability 

problems of in-service concrete structures. Recently, a summary of the current state of understanding in 

regard to the ASR mechanism and the accompanying aggregate properties is reported by [1] and the 

nondestructive evaluation (NDE) method using nonlinear impact resonance acoustic spectroscopy 

(NIRAS) is also applied to characterize the ASR damage in concrete [2]. This paper introduces new NDE 

approach [3-6] using nonlinear Rayleigh surface waves for the assessment of the ASR damage in concrete 

slab and thus it is expected that the evolution of microcracks concentrated near the surface can be 

sensitively quantified.  

 

Nonlinear Ultrasound - Second Harmonic Generation (SHG)  

A sinusoidal signal at 48 kHz frequency is excited by a function generator (AGILENT 33250A) with 260 

mV of a peak to peak voltage. The high enough acoustic energy is then obtained from a power amplifier 

and the amplified signal is fed to the 50 kHz transmitting transducer (Ultran GRD 50). For the generation 

of the Rayleigh surface waves, the transmitting transducer is coupled with the Teflon wedge by vacuum 

grease. The contact angle between the transmitter and the wedge is fixed to 36.3 degrees according to 

Snell’s law and then the wedge is tightly connected to the surface area. Figure II- 2(a) shows the wedge to 
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air-coupled configuration. The 100 kHz air-coupled transducer (Ultran GRD 100) is used to detect the 

propagating waves and tilted by approximately 8˚ to only receive the Rayleigh surface waves. The 

detected signal is then recorded in an oscilloscope (Tektronix TDS 5034B Digital) and averaged over 256 

times to increase the signal-to-noise ratio (SNR) as shown in Figure II- 2(b). The entire NLU 

measurement system is synchronized by an internal signal from the function generator. In this nonlinear 

ultrasonic measurement, the propagation distance varies from 13.5 cm to 17 cm by an incremental step of 

5 mm. It is experimentally confirmed that second harmonic amplitude no longer increases beyond 17 cm 

due to the effect of the attenuation. Concerning the previous results [3-6], it is important to note that the 

propagating Rayleigh wave is relatively free from the distortion by the boundary reflected waves within 

the propagation distances since the geometry of large scale concrete slab highly guarantees the time delay 

of the propagating reflected waves. Most importantly, it is observed that the measured A2 tends to 

monotonically increase with propagation distance while A1 shows the decreasing trend with propagation 

distance. The acoustic nonlinearity parameter is then determined by taking the slope of the linear fit of A2 

to A12 versus propagation distance as shown in Figure II- 3. Note that the linear fits for all averaged 

nonlinearity parameter of each damage level have R2 correlation coefficients higher than 98%. 

Accordingly, it is validated that the SHG theory can be applicable to the characterization of full-scale 

concrete slab. 
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(a) Air-coupled detection setup for detecting 

Rayleigh waves 

(b) The averaged time-domain signal (256 times). 

Figure II-2. The obtained time-domain and windowed signals 

 

 

Figure II-3. A2/A12 versus propagation distance. 
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Results and discussion 

The measurement of the SHG in nonlinear Rayleigh waves is performed on a single concrete slab as it 

exposed to the ASR damages in the environmental chamber for 55 days. First, the NLU measurement is 

performed after 21 days of exposure for the reference and then is repeated right after the expansion of 

surface area reaches its peak by 45 days of exposure. The measurements are repeated 4 to 5 times for each 

exposure level. Figure II- 4 shows averaged acoustic nonlinearity parameter for each damage level. The 

value of the nonlinearity parameter for the reference is 4.75×10-7, indicating that the measured 

nonlinearity parameter is relatively small, compared to previous experimental results [3-6]. It can be 

therefore interpreted that the concrete slab has less inherent microcracks. Importantly, it is mostly likely 

that the decrease in the nonlinearity parameter is attributed to the fact that the concrete slab is cured at 

consistent temperature in the environmental chamber, and therefore the effect of drying shrinkage on the 

microcracks is significantly reduced. Most importantly, it is demonstrated that the measured acoustic 

nonlinearity parameter is increased by 346% (2.12×10-6) after 45 days of exposure. The error bars shown 

in the Figure II- 7 indicate the variability of the repeated measurements, where the wedge transmitter and 

the air-coupled receiver are re-setup. 

 

Figure II-4. The measured relative nonlinearity parameter and the effect of ASR-damage on acoustic nonlinearity parameter.
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To characterize the sensitivity of the acoustic nonlinearity parameter on the ASR-induced microstructural 

behavior, the Rayleigh phase velocity are also measured simultaneously. First, the expansion on the 

surface is increased by 67% while the Rayleigh phase velocity is decrease by a maximum of 17% 

(2081.48 m/s). Therefore, it can be concluded that the expansion data provide more sensitive results for 

the effect of ASR damage than the Rayleigh phase velocity. However, the measured expansion is much 

less sensitive than the acoustic nonlinearity parameter. Overall, the experimental results clearly show that 

acoustic nonlinearity parameter is greatly sensitive to the ASR-induced microstructural behavior than 

conventionally used methods and, most importantly, this research demonstrates the applicability of the 

SHG technique using Rayleigh surface waves to the large scale concrete slab.  

 

Conclusion 

This paper validates the potential possibility of the SHG technique using Rayleigh surface waves to 

evaluate the full-scale concrete slab. The experimental results show that the trends of the measured 

fundamental and second harmonic amplitudes versus the propagation distance are in a good agreement 

with previous experimental results [1-3] and further demonstrate that the reliable and repeatable acoustic 

nonlinearity parameter can be obtained on the concrete slab. With the objective of characterizing the 

effect ASR damage on the microstructures, significant increase of the acoustic nonlinearity parameter is 

observed due to the ASR. Interestingly, the sensitivity of the nonlinearity parameter to the ASR-induced 

damage shows far greater than that of any conventional parameters used for evaluation of ASR damage. 

Overall, this research clearly shows that the SGH technique using Rayleigh surface waves is efficient 

method to assess surface concentrated damage in full-scale concrete and can provide the reliable index for 

damage characterization in concrete. 

  



NEUP CFP-12-3736 Final Report   11/30/2015 

238 
 

References 

F. Rajabipour, E. Giannini, C. Dunant, J.H. Ideker, and M.D.A. Thoams, Cement and Concrete 
Research 76, 130–146 (2015). 

K.J. Leśnicki, J.-Y. Kim, K.E. Kurtis, and L.J. Jacobs, Materials and Structures 46, 497–509 
(2013). 

G. Kim, J.-Y. Kim, K.E. Kurtis, L.J. Jacobs, Y. Le Pape, and M. Guimaraes, Materials and 
Structures, DOI 10.1617/s11527-014-0506-1 (2014). 

G. Kim, C.-W. In, J.-Y. Kim, K.E. Kurtis, and L.J. Jacobs, NDT & E International 67, 64–70 
(2014). 

G. Kim, J.-Y. Kim, K.E. Kurtis, and L.J. Jacobs, AIP Conference Proceedings 1650, 1431–1439 
(2015), DOI 10.1063/1.4914759. 

G. Kim, C.-W. In, J.-Y. Kim, L.J. Jacobs, and K.E. Kurtis, AIP Conference Proceedings 1581, 
805–813 (2014), DOI 10.1063/1.4864904. 

  



���������	��
���
� ��� 	�

����
���

� ��� �����


��� ���������
 ���
�� �� ���� 	����




������ �� 	
�
��� 
�� 

��� �
���������
��

��������� � ��������	 
�� ��

�	�
�
� ��
��	�
��
���
� ���
� ��� �
����
���� ��
 
�������� ��
�
�
�
 �
��
� �� �����
�
 
�� �����
�
 ��������
� �� ��
 
��
��	�����
 �

����� ����� �� �
�
���
��
����� ��
 ���
� �� �
 
�� 
�� ��
�
�� ��� ��
 �������� ��������
� ���
���� �� ��� �� ������
�! �� �

��
� ��� �
����
���� ��
 �
�
 �� ���������� �� ��
 ��� �
� "����� ��
 
���
�
�
� #�
 �
$� ��
� ��
��
 ������
���� �� 
 ������

� �������� ���
� ��� ��
 �
�
��
���� �� �
� ���� ��
 �����	 
�� �
��	
���
� �� ���
�
� 
���
�
�
 ��
��! ���� ��
 ���
��
�
 ��
������� %��
 �&#'� 
�� ���� ��
 �������
���
��

�
� �� ��
 �
�
�� �
��
 �� ����
�� #�
 �
� ��
� �
�
��
�
� ��
 ���
� 
�� ��
��� �� �
�
��
�
��
 �� ������
�
� �� �
����� 
�� ���� 
$�
������ � ���
� �����! �����
� ��� �����������
� ���
���
�
��
������ �� ���
 ��
� 
��������! �� ��
� ��
 �������� 
�
����� �� ����
��
� �� �
����
���� ��
 ��
����

�
�
$
���� 
� �����
�� �
� �
�� ������ ��
 ��
�� #�
 �
� 
$�
����� �� ��
 
���
�
�
 
�� ��
 &#'
�
��
� ��
������� �
�
�
 �� ��
 �����
�
! "���� �� 
�
��%
� �� �������
�
 ���
� ()! ���� "����
��
 
���� ��

� �� ���
� �
�
��
���� ��
����� �� ��������
�
�� #�
 �
� 
�� ��
 �
�
�
� �����
�


�
 �
���������
��� ��

�
� 
� 
 �"�	��
�
 ������	*���� �
����! "���� �� ���	��
��
�� �
�
��
 ��
��
�	�

���� ��� �����
 "
�
� �� �
�����
�� #�
 ��������� �� 
+��������� �
�"

� ��
 ��
�
� ��
"�
� �
��
�
���
��� ��������
� ��
 ��
����
 ��������� ��
� ���� ��
 �����
�
� ,
�
����� �� ��

���
�� �
���� �� ��
 ����� ��
�
! ��
 ��
����� �
�
�
 �� ���
��
� 
�� ��
 
$�
����� �� ���
�����
��
#�
 ��

� �� ����� �� �
�
 
 �
-�� �����
���� 
�
�� �� �����	�
�
�
 
�������� �� ��� �
�
�
!

�� �� ������
�� 
�
� ��� ���
���
���� �
���
���� 
$�
���
���� � ��
��
 
$������ 
�������� �� ���

���
��
���� �� ��
 ��� �����
� �� ������
�
�� ���
���! �� �
���
�
 ��
 ���
�! ����
����� .�� �� �
�����
�
�� �
�
 ���� ��
 ���
�
���
 
�
 �
������
�
��

���������	��

��� �������	���
� ���
��
� ����� ���
�	 ������� ���������	 �� 

�
���� �� ���� 

����� ������
��
��� 
��	������� 	���
�� ��� ���
��
� ��
��
�	 � ��� ���� 
�� ������ ��
��
�	 ��
��� 
� ������
��� 	������� ���� ��	���	� ����
���� �����  ! �
 "! ����	� �	 
���� 
��	��� 	�#��� 	������� ��������
��
� ��� ���
������ �� 

�
���� 	���
����	� ���
� ������ ����	�	 ��� ���� ��� �
�	� ������ ��	



����� �� ��		�#� 	���
����	 	�
� �	 ���	� ����� ������	 ��� ��
���� �
��� ����� 	���
����	�
�
 ���#��� ��� ��� ������ �	 
�� ���
����� �
�� 
� 	�	�������� ��	����

��� ������ ��� �
 ��
����	���
� ���
��
� ����� ���	
 
����� ��� ��
������������� ���
��
��
���� ��	 $�	� ������$�� �� �����
� �� %&'! (')*� ���
� ���� ���� � #�	� �
�� 
� ���������� 
�
���	 �����
�
�	 ��
���� ��	 ���� �

�������� ('� +� '%�  � ''� ,%� '+� ')�  )� - � %"�  '�  -� --�
-%� ,+� ,-� ,"� ,)� ,,� ,'� %&� -!� ',� %)� %� ����*� .
�������	�#� ���������� ��#���	 ��#� ��
�����
���� ��#�� �� ��
��� ��� /� ('+* ��� 0�� �� ��� ('%*� ��� 
����
�� ������
�	 ��#
�#�� �� ���
��#� ���� ���	����� ��� ��	
�		�� �� ('�  � '%� '"� '+*�

� ��#��� ����#��� �
 ���������
�� �
������ 
� ��� 
����
�� ���
��
� ������
	 ���
� �
 %&&&
������	 �� ��� ����
��
��
� 
� ('*� �� �1
������ ��
��� ��#��� ����#��� �
 ��� ��� ������

�������	�
 ��
�	���� �����

�� ��� ���� ������ �����

�� �� �	�	� ��� ������	��� ���	����	�� ���
�����	��
 ��	�����  ����!�
���� "�	���
	��� �#$% ����	��� &���� ���'(#�%� ����
���� ���	��	
 )*�*+, -.
/�-���0�����!�
��������, �����
����	�� �������

�1������� &�
����� (

	
�����  ����!�
���� "�	���
	���

%



���������	 �� 
��	� �	 ��
 �	���������	 �
 ������� �	� ��	������� ���
� ���� ���� ���
� ���
���� ��
 ���� �� ������
 � �
	
��� ���������� �	������ �
 � ��

���������
� �� �����
 !��
�
�	 �������� ������
 �����
�
 �������
 ���
� "#$%&'� ��� �
 ��
 �� �
� 
(��	���	 ��� �����
�
�� ����� �	 ��
 �	�
��������
 ��	�����) ���� 	� �
��� ��
 �� �
� ��*����	� #����	� ��� �
 ��


(��	���	 �	�� ��
 �	�
��������
 ��	����� �� � 
*
����
 ������������	 !�� �� �����
� ����) �	 �
�
�

���� �
����� ������
) ��
 
(��	���	� ����� ����
 	� ���
��
� �	� 	� �����
) �������� �	
�
����� ��
� ���
�� ������

� �����
�
	���
 ���
� 
�� ���������� �	������ �
 �� �������	� ��
 
��
	���� �������� ��
�
	��
	� �	����
� �

�� �	������!�
� ��
 ��
�
	� �!+
����
 �� �� 
�������
 ���� � ���
�) �����
���� �	����
 � �
������� !�� ��	��
�!�� �����
 �������
��,����	 �
 ������� ���
� �
 ���
� �	�
����-�) ��
 �����������	 �
 �
� 
(�
��
� �	 ��
 ����
	
� �
�
	� ����
) ��
 ��*����	 ��	���� �

�
� 
(��	���	) ��
 
�������	 �
 ���
���� �����
 ���� ��� �	��������) ��
 ���
�� �
��(����	 �	�
�����
 ���������	 !� ��

�) ��
 �������� 
*
���) ��
 
*
��� �
 �
�
�
��������	 �	� 
(�
�	��
����	�) �	� ��
 
���������	 �
 �	 
*
����
 �	� ���!�
 	��
����� ���������� ��
 �!+
����
 �� �
��	��	���) ����
� ���	 �����
�
) ���
�) ��	�
 ���� �� ����� ��
 �	�� ��� �� �	���,
 ����
 ���

�
���
	���	�� ��������
�� ���	� ������� ��	��������
 ���
�� �	 
(���
	�
) ��
 ��������	
 ���
�
�� ������������ �����!�
 !
����
 �� ��	 ������
 ��*
�
	� �
��

� �
 �����
 �	 ���	
� �
 ��*
�
	�
���
	�����	��

��
 
��
	�����	 ����
� !� ��
 �� �� ��*
�
	� 
��� ��
 ��
���� 
��
	�����	 �� ����	-��


��
	�����	� ��
 ����
� �� ������ �������
 �� ��
 ���
����	���
� �

�������	 �	� ����
� "�� ��
�����
� �� ����
' 	� �����
 �	�
�����	
� ��	��
�
� ��
 �� �
� 
(��	���	 �	�� ��
 ���
�
�	� ���������-� ����� ��
 ������ ����� �-
�
��	 �
 ���
���� 
��� �����	) �������	� ���
����
�����
� .� �� �������� �	 
��
	�����	 �	 � ��!�����
 �
 ��
 ���
�����

��
 �!+
����
 �
 ��
 ��
�
	� ���- �� �� ��
�
	� � 	
� �����
�
	���
 ��	��	��� ���
�
����!�
 �
 �������	� ��
 ���	 ������� �
 �� �����
) �	�����	�/ 0' �
��� �
 ��
 �� ��

�� ��*����	 �
 �� �
� �	�� ��
 ���
� �	� 
(��	��	� ����-� �����	 �	� �
�� 	
�� ����
���

����	�1 �' 
�������	� �
 ��
 ����� 
���
���- �
 ��	��
�
 �� � ��������
 �
���� ����
� !�
2��� 
(��	���	 �	 ��
 ���
� �	� ����-�1 3' ���
	�
� �������
� �
 �����
1 4' ���������	 !�
��

� "���� ��
����� ���	�' �
 ��
 ���
��
� ��
��
� !� �
� 
(��	���	1 �	� 5' ��	���� �
 �� 
����
�� !� ��������	 �
 ���
 �������� ��
 �� �
�
�
��������	 �� 
(�
�	�� ����	�� � �����
	��	�
������ 
��
	���� �!+
����
 �� �� 
�������
 �	 �	��	�����	���� ���!�
 ����������	�� ���������
�
������	� ��	� ���
 ��
��� �� ��
��
 � ���
� �
������	� ��
 �	������ �� �	 ����
 ��������
�)
� ����������� ��	��	��� ���
� "���� � ������,����	 �����
� ��
�
	��	� �	���!����� �
 ��
�
	�	�
�����
' �� ������� �� ������
 ��
 ���
	�
� �������
� �
 �� �����
 �	�
� �
	
��� "	�	�
�����������' ���
�� ����
�) ��
 ��������	
 ��	��������
 �����
 ��6� ���
� �� !
�� �	� ��� ���
��
�
����	 &7 �� ��
�) �������� ��
 ���
��� �
 ��
 ��
�
	� ���
� ��
 �������!�
 �� �	� ��	��������

�����
 ���
��

�� �
����!
 ��
 ���������	 �
 ��
 �� �
� �	 ��
 ��	
��� ����
���
) ��
 ���
� �
 8�9�	�
�	� ��
*
	� "�666' �� �����
�� ���� ���
� �� ��	���
�
� �� � ���
	 �	���) ����� ��
����� ��

�
� ���� M(t) �
� �	�� ��
� �
 ����
���
 ���
��
 "-�:�2' 
(����
� �	�� ��
 ��+��
	� ���
� �	�
�
�
����	� ����-� �	 ��
 �����() �� � 
�	����	 �
 ���
 t� ��
 ������	� ���� ��
 �
	
������	
�
 �� �
� �	�� ��
 ���
� �
 ��
 ������ ������	��	� ��
 ����
���
 ��
�
 �� ��	���
�
� �� !

�	
����) ��
�) ��
 
�������	 �
 �
� ���� M(t) �� ��	���
�
� �� !
 �	�
�
	�
	� �
 ��
����
 p(t)
�
�
���
� �	 ��
 ���
� ������	��	� ��
 ����
���
 ��
�
� ���� ��) �
 �����
) � ������������	)
�������� ���!�!�� 	�� � ��+�� �	
 ��	�
 ��
 ���
 ��
����
� ������	�!�
 !� ��	��
�
 ��		�� !

����
 
	���� �� ���� ���	 ��
 ������������� �
�����	 ����
���!���

��
 
�������	� ���
� �
 8�9�	�) ;� �	� &
�
�� "�666' �� 	�� ��
� ��	�
 �� �� ���
����� ���
	�

���
 �������� ����� �
��� ���� ����� ������
���	��� �
 
������
 ����
	 !� ���
 ��
����
� ����

�



���������� ���	
��� �
	
�� ���� �
	 ����	������ ��� �������� ���� 
� �
���	��������� ������
��	������ ���� ������ ������� ������� ��� �� ����� �

 �������� �
 ������� ��� ������� �� �
�
������� �
����

������ �� ��	
����
 ��
�� ��� �������� �� ��� ��� ���
������

��	�� �� ���� �
 ���	
���� � �
��� �
	 ��� 
������� 
� ��� �	
�����
� �� ����	�� ���	������� �

���� ���� ��� ��������� �
��� 
� ������ ��� ��� ��� !"#� �� ���	
$�� %� &������	� '������ ���
�� (���
 !)#� ��� �������� �
����� ��	�� �� ��
����� ����� ��� ����� 
� ���	����� �	���� �� �
�
�

 ���
	����� ����	���� �	���� 
� �������	 D �	� �
�����	���

��� &�* 	�����
� 
���	� �� $�	�
�� 	���
��� �
����� ����	��� �
�	��� ������ ��� �	����
��
�� ���	 ��� �	��� ��	���� ���� %� ����$���� �	�� ��� ��� ���� �
 ����$��� ��� �����	 �
�	���
���� �	
� ���� ��� ������ ����� �� �� �$�	��� %���$�
	 
� ���� ���	����� �	����� �� ���	
����
� ����	�� �
������� �
��� �� ����� ����	 �
 �� ��� 	������� ���
 � ����	���� ���	����� �	����
���� � ����	���� �� ����� ��� &�* ��
�� ����� �� � ����	�� �
������� ���� ��� &�* 	�����
�
�� ������� �
 ��
� ����� ��������� �� ��� �	
�� 
� ����	 �����	���
�� ����� �
	�� � ����	����
��	���� 
� ���	������ 	����� z +���� ,�-� ��� 	�����
� �� ��
��� �
�� %� ��� �� ���
� 
� ����	
��	
��� ��� ���	����� ������ ��� ��	������	�� ��	
��� ��� ����	 
� &�* ��� ��	���� �
	���� (�
�
�� ���	���
� �
������ !".#� ��� 	����� �� ���
� 
� ����	 ��	
��� ��� %�		��	 
� ��� �	�$�
����
�
	��� &�* ��� �� ���� �
��	
�� ��� 	��� 
� &�*� ���� �� ���
� �
��	
� �����	�� ��� � ��� 
�
�	��� ���� 
� ��� 	�����
� 	���� ������� 
� ��� �� ���
� ����
�����

�
	 ��� ��
� 
� ����������� ��� 	����� �	
��� 
� ����	 �
�����	���
� ξw +����	 ���� ��	 ����
$
���� 
� ���	�����- �� �
�����	�� �
 %� ���� ��� �� ������� �
 %� ��� �
����
� 
� ��� �������
����� �����	 �� ���
� �/����
� �� ����	���� �

	������� !"#� �
	 ��� �	
��	 %
����	� �
�����
���
���� ��������
� ������ ��� �	
���0

ξw = wsF (x̄), F (x̄) =
1− z̄/x̄

1− z̄
, x̄ =

2x

D
, z̄ =

2z

D
+,-

���	� x 1 	����� �
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ż = bD∇p ����� ∇ ������� ��� �������� ��� bD 1 0��
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!�� ��������� xn �n = 1, 2, ...nt) ���� ��� �������� 
�	 ������� �� ��� ������ �� �		 ����� ��������
����� ���$ ������	$ ���
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��� �� ���������� ��� ��	��� ��������
v− vca �� ��� ������ 
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v − vca
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� �-�
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������ ��� ��	��� �������� �� /��� �������	��)��� 
�	 �� 
� ��	� �������� �����
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